-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed.py
58 lines (46 loc) · 2.02 KB
/
embed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import os
import orjson
import numpy as np
from tqdm import tqdm
from typing import List, Dict, Any
from timeit import default_timer as timer
from utils import get_messages, time_elapsed
from fastembed.embedding import DefaultEmbedding
class EmbeddingService:
def __init__(self):
self.model = self.load_model()
self.filename = "cache/embeddings.npy"
self.documents = get_messages()
self.embeddings = self.get_embeddings()
def load_model(self) -> DefaultEmbedding:
start_time = timer()
model = DefaultEmbedding()
print(f"Model loaded in {time_elapsed(start_time)} ms")
return model
def embed_documents(self) -> np.ndarray:
embeddings = []
progress_bar = tqdm(total=len(self.documents), desc="generating embeddings", unit="doc")
for document in self.documents:
embeddings.extend(self.model.passage_embed([document]))
progress_bar.update(1)
progress_bar.close()
return np.array(embeddings)
def embed_query(self, query: str) -> np.ndarray:
return next(self.model.query_embed(query))
def get_embeddings(self) -> np.ndarray:
if os.path.exists(self.filename):
start_time = timer()
embeddings = np.load(self.filename)
print(f"embeddings loaded in {time_elapsed(start_time)} ms")
else:
embeddings = self.embed_documents()
np.save(self.filename, embeddings)
print("saved generated embeddings!")
return embeddings
def get_top_k(self, query_embedding: np.ndarray, k: int = 5):
scores = np.dot(self.embeddings, query_embedding)
sorted_indices = np.argsort(scores)[::-1]
unique_documents = list(dict.fromkeys(self.documents[idx] for idx in sorted_indices if self.documents[idx]))
top_k_documents = unique_documents[:k]
table_data = [(rank+1, f"{scores[self.documents.index(doc)]:.4f}", f"{doc[:50]}..") for rank, doc in enumerate(top_k_documents)]
return table_data