-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgcntwi22.py
187 lines (171 loc) · 5.74 KB
/
gcntwi22.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import os.path as osp
import time
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.metrics import f1_score
import pandas
import json
import torch_geometric.transforms as T
from torch_geometric.nn import ChebConv, GCNConv, Linear # noqa
from tqdm import tqdm
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import accuracy_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn import preprocessing
import random
parser = argparse.ArgumentParser()
parser.add_argument('--use_gdc', action='store_true',
help='Use GDC preprocessing.')
args = parser.parse_args()
path = '../../datasets'
dataset1 = 'Twibot-22'
path1 = os.path.join(path, dataset1)
with open(os.path.join(path1, 'user.json'), 'r', encoding='UTF-8') as f:
node1 = json.load(f)
# edge1 = pandas.read_csv(os.path.join(path1, 'edge.csv'))
label1 = pandas.read_csv(os.path.join(path1, 'label.csv'))
split1 = pandas.read_csv(os.path.join(path1, 'split.csv'))
source_node_index = []
target_node_index = []
i = 0
v = 0
userid = []
id_map = dict()
X = pandas.read_csv('twi22X_matrix.csv').values
edge_Index=pandas.read_csv('twi22edge_index.csv').values.T
print(label1.shape)
print(split1.shape)
print(X.shape)
for node in tqdm(node1):
if node['id'][0] == 'u' and node['id'] not in id_map.keys():
userid.append(str(node['id']))
id_map[node['id']] = i
i = i+ 1
print(i)
label = []
for i in tqdm(range(X.shape[0])):
X[i,0]=(X[i,0]/86400.0) + 577.0
# X = preprocessing.minmax_scale(X, axis=0)
for index, node in tqdm(label1.iterrows()):
if node['label'] == 'bot':
label.append(1)
if node['label'] == 'human':
label.append(0)
Label = np.array(label)
print(Label.shape)
train_id = []
test_id = []
val_id = []
for index, node in tqdm(split1.iterrows()):
if node['split'] == 'train':
# train_id.append(userid.index(node['id']))
train_id.append(id_map[node['id']])
if node['split'] == 'test':
# test_id.append(userid.index(node['id']))
test_id.append(id_map[node['id']])
if node['split'] == 'val':
# val_id.append(userid.index(node['id']))
val_id.append(id_map[node['id']])
print(len(train_id))
print(len(test_id))
print(len(val_id))
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
# self.conv1 = GCNConv(5, 16, cached=True,
# normalize=not args.use_gdc)
# self.conv2 = GCNConv(16, 16, cached=True,
# normalize=not args.use_gdc)
self.lin = Linear(5,2)
# self.conv1 = ChebConv(data.num_features, 16, K=2)
# self.conv2 = ChebConv(16, data.num_features, K=2)
def forward(self):
x, edge_index = torch.FloatTensor(X), torch.LongTensor(edge_Index)
# x = self.conv1(x, edge_index)
# x = F.dropout(x, training=self.training)
# x = F.relu(self.conv2(x, edge_index))
x = self.lin(x)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(torch.device('cpu'))
optimizer = torch.optim.Adam([
# dict(params=model.conv1.parameters(), weight_decay=5e-4),
# dict(params=model.conv2.parameters(), weight_decay=0),
dict(params=model.lin.parameters(), weight_decay=0)
], lr=0.005) # Only perform weight-decay on first convolution.
# train_set = model.forward()[train_id]
train_label = Label[train_id]
# val_set = model.forward()[val_id]
val_label = Label[val_id]
# test_set = model.forward()[test_id]
test_label = Label[test_id]
human=[]
bot=[]
for i in train_id:
if Label[i]==0:
human.append(i)
if Label[i]==1:
bot.append(i)
sample=random.sample(human,len(bot))
Train=sample+bot
Train_label=Label[Train]
print(len(Train))
print(Train_label.shape)
def train():
model.train()
optimizer.zero_grad()
prob_train=model()[train_id]
pred_train = prob_train.max(1)[1]
acc_train = accuracy_score(train_label, pred_train)
loss = F.nll_loss(model()[Train], torch.LongTensor(Train_label))
loss.backward()
optimizer.step()
return float(loss), acc_train
@torch.no_grad()
def test():
model.eval()
accs = []
precs=[]
recs=[]
f1s=[]
pred_train = model()[train_id].max(1)[1]
acc_train = accuracy_score(train_label, pred_train)
accs.append(acc_train)
pred_val = model()[val_id].max(1)[1]
acc_val = accuracy_score(val_label, pred_val)
accs.append(acc_val)
pred_test = model()[test_id].max(1)[1]
prob_test = model()[test_id][:,1].T
acc_test = accuracy_score(test_label, pred_test)
prec=precision_score(test_label, pred_test, average='macro')
rec=recall_score(test_label, pred_test, average='macro')
f1=f1_score(test_label, pred_test, average='macro')
accs.append(acc_test)
auc=roc_auc_score(test_label, prob_test, average='macro')
return accs, prec, rec, f1, auc
for i in range(5):
best_val=0
best_test=0
best_f1=0
Prec=0
Rec=0
for epoch in range(1, 101):
loss=train()
train_acc, val_acc, test_acc = test()[0]
test_prec, test_rec, test_f1, auc=test()[1], test()[2],test()[3],test()[4]
if val_acc>best_val:
best_val=val_acc
best_test=test_acc
best_f1=test_f1
Prec=test_prec
Rec=test_rec
# print(f'Epoch: {epoch:03d}, Loss:{loss:.4f}, Train: {train_acc:.4f}, '
# f'Val: {val_acc:.4f}, Test:{test_acc:.4f}, Prec:{test_prec:.4f}, Rec:{test_rec:.4f}, F1:{test_f1:.4f}, AUC:{auc:.4f}')
print(best_test, Prec, Rec, best_f1)