Skip to content

Latest commit

 

History

History
63 lines (43 loc) · 2.14 KB

readme.md

File metadata and controls

63 lines (43 loc) · 2.14 KB

GCN and GAT


└── cresci-2015,Twibot-20,Twibot-22
    ├── main.py  # train model on the processed data
    ├── dataset.py  # preprocess data
    ├── utils.py  
    └── model.py  # load GCN/GAT model 

How to reproduce:

  1. specify the dataset by running dataset=Twibot-22 in Dataset.py (Twibot-22 for example) ;

  2. change the model in the model.py

  3. train model by running:

    python main.py

Result:

random seed: 100, 200, 300, 400, 500

GCN

dataset acc precison recall f1
Cresci-2015 mean 0.9637 0.9559 0.9881 0.9717
Cresci-2015 std 0.0057 0.0069 0.0020 0.0043
Twibot-20 mean 0.7753 0.7523 0.8762 0.8086
Twibot-20 std 0.0173 0.0308 0.0331 0.0068
Twibot-22 mean 0.7839 0.7119 0.4480 0.5496
Twibot-22 std 0.0009 0.0128 0.0171 0.0091

GAT

dataset acc precison recall f1
Cresci-2015 mean 0.9689 0.9610 0.9911 0.9758
Cresci-2015 std 0.0021 0.0071 0.0051 0.0015
Twibot-20 mean 0.8327 0.8139 0.8953 0.8525
Twibot-20 std 0.0056 0.0118 0.0087 0.0038
Twibot-22 mean 0.7948 0.7623 0.4412 0.5586
Twibot-22 std 0.0009 0.0139 0.0165 0.0101
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Kipf et al. 0.7839 0.5496 F T G Graph Neural Network
Velickovic et al. 0.7948 0.5586 F T G Graph Neural Network