Skip to content

Latest commit

 

History

History

HGT_SimpleHGN

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Hetergenour Graph Transformers

Are we really making much progress? Revisiting, benchmarking, and refining heterogeneous graph neural networks

  • authors: Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, Jie Tang
  • link: https://arxiv.org/abs/2112.14936

  • file structure:
├── cresci-2015
│   ├── HGT.py  # train HGT on cresci-2015
│   ├── SimpleHGN.py # train SimpleHGN on cresci-2015
│   ├── Dataset.py
│   └── layer.py
├── Twibot-20    
│   ├── HGT.py  # train HGT on Twibot-20
│   ├── SimpleHGN.py # train SimpleHGN on cresci-2015
│   ├── Dataset.py
│   └── layer.py
└── Twibot-22
    ├── HGT_sample.py  # train HGT on Twibot-22
    ├── SimpleHGN_sample.py # train SimpleHGN on Twibot-22
    └── layer.py
  • implement details:
  1. We just consider the graph with user as node and their follow relations (e.g. follower & following) as edge due to the limitation of computation resources.

  2. We fix HGT and SimpleHGN's attention head to 1 for simplicity.

  3. To enable the training on large-scale graph such as Twibot-22, we adopt the NeighborLoader in torch geometric with num_neighbors set to 20 and sample for 2 iterations.

  4. Input features for user node is taken from BotRGCN, more details please refer to BotRGCN imlementation

  • Requirements
CUDA==10.2
pytorch-lightning==1.4.9
torch==1.9.1
torch-geometric==2.0.2
torch-cluster==1.5.9
torch-scatter==2.0.9
torch-sparse==0.6.12
torch-spline-conv==1.2.1
sklearn
argparse

How to reproduce:

Please change the path argument into your own path to preprocess files

  • reproduce HGT on cresci-2015 & Twibot-20
CUDA_VISIBLE_DEVICES=0 python HGT.py --batch_size 128 --epochs 200 --path /path/to/preprocess/file
  • reproduce HGT on Twibot-22
CUDA_VISIBLE_DEVICES=0 python HGT.py --batch_size 128 --epochs 200 --path /path/to/preprocess/file
  • reproduce SimpleHGN on cresci-2015 & Twibot-2015
CUDA_VISIBLE_DEVICES=0 python SimpleHGN.py --batch_size 128 --epochs 200 --path /path/to/preprocess/file
  • reproduce SimpleHGN on Twibot-22 dataset
CUDA_VISIBLE_DEVICES=0 python SimpleHGN.py --batch_size 128 --epochs 200 --path /path/to/preprocess/file

Result:

HGT
dataset acc precison recall f1
Cresci-2015 mean 0.9603 0.9480 0.9911 0.9693
Cresci-2015 std 0.0032 0.0049 0.0012 0.0024
Twibot-20 mean 0.8691 0.8555 0.9100 0.8819
Twibot-20 std 0.0024 0.0031 0.0057 0.0019
Twibot-22 mean 0.7491 0.6822 0.2803 0.3960
Twibot-22 std 0.0013 0.0271 0.0260 0.0211
SimpleHGN
dataset acc precison recall f1
Cresci-2015 mean 0.9671 0.9568 0.9929 0.9745
Cresci-2015 std 0.0054 0.0090 0.0040 0.0040
Twibot-20 mean 0.8674 0.8476 0.9206 0.8825
Twibot-20 std 0.0022 0.0046 0.0051 0.0018
Twibot-22 mean 0.7672 0.7257 0.3290 0.4544
Twibot-22 std 0.0027 0.0279 0.0164 0.0042
baseline acc on Twibot-22 f1 on Twibot-22 type tags
HGT 0.7491 0.3960 F T G Graph Neural Networks
SimpleHGN 0.7672 0.4544 F T G Graph Neural Networks