-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathgenerate_features.py
151 lines (127 loc) · 4.18 KB
/
generate_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from email.policy import default
import json
from tqdm import tqdm
import numpy as np
import os
import numpy as np
dataset_name='Twibot-22'
dataset_path=dataset_name+'/'
if not os.path.exists(dataset_name):
os.mkdir(dataset_name)
def Lev_distance(A,B):
#A = "fafasa"
#B = "faftreassa"
dp = np.array(np.arange(len(B)+1))
for i in range(1, len(A)+1):
temp1 = dp[0]
dp[0] += 1
for j in range(1, len(B)+1):
temp2 = dp[j]
if A[i-1] == B[j-1]:
dp[j] = temp1
else:
dp[j] = min(temp1, min(dp[j-1], dp[j]))+1
temp1 = temp2
return dp[len(B)]
'''
train 8278
dev 2365
test 1183
support 217754
'''
def get_id(data):
id_list=[]
for users in data:
id_list.append(eval(users['ID']))
np.save('id.npy',np.array(id_list))
def get_gt(data,dataset):
gt_list=[]
for users in data[:8278+2365+1183]:
gt_list.append(eval(users['label']))
np.save(dataset+'/'+'label.npy',np.array(gt_list))
def get_num_digits(a):
num=0
for i in a:
if i.isdigit():
num=num+1
return num
def tweet_behav(data):
pass
def tweet_cont(data):
pass
def get_uni(word):
classes=[]
uni_class=np.load('uni_class.npy')
for i in word:
uni=0
for j,k in enumerate(uni_class):
if(k>ord(i)):
uni=j-1
break
classes.append(uni)
try:
return max(classes)
except:
return 0
def account(data):
user_profile=[]
user_name=[]
for user in tqdm(data):
user_pro_temp=[]
user_pro_temp.append(user['profile']['default_profile'])
user_pro_temp.append(user['profile']['geo_enabled'])
user_pro_temp.append(user['profile']['protected'])
user_pro_temp.append(user['profile']['verified'])
#user_pro_temp.append('False')
user_pro_temp.append(user['profile']['friends_count'])
user_pro_temp.append(user['profile']['followers_count'])
user_pro_temp.append(user['profile']['favourites_count'])
user_pro_temp.append(user['profile']['listed_count'])
user_pro_temp.append(user['profile']['statuses_count'])
user_pro_temp.append(user['profile']['profile_use_background_image'])
try:
user_pro_temp=[int(eval(x)) for x in user_pro_temp]
except:
pass
user_profile.append(user_pro_temp)
#profile name
try:
#screen_name_length=len(user['profile']['screen_name'].rstrip())
screen_name_length=len(user['name'].rstrip())
user['profile']['screen_name']=user['name']
except:
print(user['profile']['screen_name'])
screen_name_length=0
try:
#user_name_length=len(user['profile']['name'].rstrip())
user_name_length=len(user['username'].rstrip())
user['profile']['name']=user['username']
except:
user_name_length=0
screen_name_digits=get_num_digits(user['profile']['screen_name'].rstrip())
#user naem unicode group
user_uni=get_uni(user['profile']['name'].rstrip())
# screen name unicode group
screen_uni=get_uni(user['profile']['screen_name'].rstrip())
lev=Lev_distance(user['profile']['name'],user['profile']['screen_name'])
user_name.append([screen_name_length,user_name_length,screen_name_digits,user_uni,screen_uni,lev])
return np.concatenate((np.array(user_profile), np.array(user_name)),1)
#/data2/whr/lyh/project3/Twibot-20
if __name__ == '__main__':
files=['train','val','test']
#files=['user']
data=[]
for file in files:
#/data2/whr/lyh/twibot22_baseline/Twibot-2
name='/data2/whr/lyh/twibot22_baseline/Twibot-22/'+file +'.json'
#name='/data2/whr/czl/TwiBot22-baselines/datasets/Twibot-22/'+file+'.json'
f=open(name)
users=json.load(f)
print('{} {}'.format(name,len(users)))
data=data+users
#get_gt(data,dataset_name)
ac_matr=account(data)
lev_matr=ac_matr[:,-1]
np.save(dataset_name+'/'+'ac.npy',ac_matr)
np.save(dataset_name+'/'+'lev.npy',lev_matr)
print()