Skip to content

Latest commit

 

History

History

Santos

Uncovering Social Media Bots:a Transparency-focused Approach


├── cresci-2015
├── dlc2015.py # convert raw dataset into standard format and save them
├── Twibot-20    
├── dltwi20.py # convert raw dataset into standard format and save them
├── cresci-2017
├── dlc2017.py # convert raw dataset into standard format and save them
├── midterm-2018
├── dlm2018.py # convert raw dataset into standard format and save them
├── gilani-2017    
├── dlg2017.py # convert raw dataset into standard format and save them
├── cresci-stock-2018
├── dlcs2018.py # convert raw dataset into standard format and save them
├── cresci-rtbust-2019
├── dlcr2019.py # convert raw dataset into standard format and save them
├── botometer-feedback-2019   
├── dlbf2019.py # convert raw dataset into standard format and save them
└── dt.py       # train a decision tree
  • implement details: Since some datasets don’t contain contents of tweets which users posted, we extracted features from user’s description if the dataset we use doesn’t have content of tweets.

How to reproduce:(Twibot-20 For example)

  1. convert the raw dataset into standard format by running

    python dltwi20.py

    this command will create related features in corresponding directory.

  2. open:

    python gcntwi22.py

    then change filename into features created by first command and change the path to datasets in codes in line31-line34

Result:

dataset acc precison recall f1
Twibot-20 mean 0.5866 0.6273 0.5813 0.6034
Twibot-20 std 0.0000 0.0000 0.0000 0.0000
Cresci-2015 mean 0.7084 0.7286 0.8580 0.7880
Cresci-2015 std 0.0000 0.0000 0.0000 0.0000
Cresci-2017 mean 0.7384 0.8171 0.8440 0.8303
Cresci-2017 std 0.0000 0.0000 0.0000 0.0000
midterm-2018 mean 0.8661 0.8805 0.9724 0.9242
midterm-2018 std 0.0001 0.0000 0.0000 0.0000
gilani-2017 mean 0.5144 0.3226 0.0935 0.1449
gilani-2017 std 0.0000 0.0000 0.0004 0.0000
cresci-stock-2018 mean 0.6245 0.6539 0.6495 0.6517
cresci-stock-2018 std 0.0000 0.0000 0.0000 0.0000
cresci-rtbust-2019 mean 0.7353 0.7568 0.7568 0.7568
cresci-rtbust-2019 std 0.0000 0.0000 0.0000 0.0000
botometer-feedback-2019 mean 0.7170 0.5000 0.1333 0.2105
botometer-feedback-2019 std 0.0000 0.0000 0.0000 0.0000
baseline acc on Twibot-22 f1 on Twibot-22 type tags
Santos et al. / / F T decision tree