-
authors: Eric F. Santos, Danilo S. Carvalho, Livia Ruback, Jonice Oliveira
-
file structure:
├── cresci-2015
├── dlc2015.py # convert raw dataset into standard format and save them
├── Twibot-20
├── dltwi20.py # convert raw dataset into standard format and save them
├── cresci-2017
├── dlc2017.py # convert raw dataset into standard format and save them
├── midterm-2018
├── dlm2018.py # convert raw dataset into standard format and save them
├── gilani-2017
├── dlg2017.py # convert raw dataset into standard format and save them
├── cresci-stock-2018
├── dlcs2018.py # convert raw dataset into standard format and save them
├── cresci-rtbust-2019
├── dlcr2019.py # convert raw dataset into standard format and save them
├── botometer-feedback-2019
├── dlbf2019.py # convert raw dataset into standard format and save them
└── dt.py # train a decision tree
- implement details: Since some datasets don’t contain contents of tweets which users posted, we extracted features from user’s description if the dataset we use doesn’t have content of tweets.
-
convert the raw dataset into standard format by running
python dltwi20.py
this command will create related features in corresponding directory.
-
open:
python gcntwi22.py
then change filename into features created by first command and change the path to datasets in codes in line31-line34
dataset | acc | precison | recall | f1 | |
---|---|---|---|---|---|
Twibot-20 | mean | 0.5866 | 0.6273 | 0.5813 | 0.6034 |
Twibot-20 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-2015 | mean | 0.7084 | 0.7286 | 0.8580 | 0.7880 |
Cresci-2015 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Cresci-2017 | mean | 0.7384 | 0.8171 | 0.8440 | 0.8303 |
Cresci-2017 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
midterm-2018 | mean | 0.8661 | 0.8805 | 0.9724 | 0.9242 |
midterm-2018 | std | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
gilani-2017 | mean | 0.5144 | 0.3226 | 0.0935 | 0.1449 |
gilani-2017 | std | 0.0000 | 0.0000 | 0.0004 | 0.0000 |
cresci-stock-2018 | mean | 0.6245 | 0.6539 | 0.6495 | 0.6517 |
cresci-stock-2018 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
cresci-rtbust-2019 | mean | 0.7353 | 0.7568 | 0.7568 | 0.7568 |
cresci-rtbust-2019 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
botometer-feedback-2019 | mean | 0.7170 | 0.5000 | 0.1333 | 0.2105 |
botometer-feedback-2019 | std | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
baseline | acc on Twibot-22 | f1 on Twibot-22 | type | tags |
---|---|---|---|---|
Santos et al. | / | / | F T | decision tree |