-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
140 lines (105 loc) · 4.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import gym
import torch
import cv2
import random
import os
import numpy as np
import matplotlib.pyplot as plt
from deepq_network import CNN, LinearMapNet
def discretize_state(state):
discrete_state = (min(2, max(-2, int((state[0]) / 0.05))), \
min(2, max(-2, int((state[1]) / 0.1))), \
min(2, max(-2, int((state[2]) / 0.1))), \
min(2, max(-2, int((state[3]) / 0.1))), \
min(2, max(-2, int((state[4]) / 0.1))), \
min(2, max(-2, int((state[5]) / 0.1))), \
int(state[6]), \
int(state[7]))
return discrete_state
def epsilon_greedy(q_func, state, eps, env_actions):
prob = np.random.random()
if prob < eps:
return random.choice(range(env_actions))
elif isinstance(q_func, CNN) or isinstance(q_func, LinearMapNet):
with torch.no_grad():
return q_func(state).max(1)[1].item()
else:
qvals = [q_func[state + (action, )] for action in range(env_actions)]
return np.argmax(qvals)
def greedy(qstates_dict, state, env_actions):
qvals = [qstates_dict[state + (action, )] for action in range(env_actions)]
return max(qvals)
def discounted_return(episode_return, gamma):
g = 0
for i, r in enumerate(episode_return):
g += gamma**i * r
return g
def decay_epsilon(curr_eps, exploration_final_eps):
if curr_eps < exploration_final_eps:
return curr_eps
return curr_eps * 0.996
def get_frame(env):
# Returned screen requested by gym is 400x600x3, but is sometimes larger such as 800x1200x3
# in general env.render(mode='rgb_array') returns a numpy.ndarray with shape (x, y, 3)
screen = env.render(mode='rgb_array')
frame = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY)
frame = cv2.resize(frame, (84, 84), interpolation=cv2.INTER_AREA)
frame = np.expand_dims(frame, -1) # convert into shape (84, 84, 1)
frame = frame.transpose((2, 0, 1)) # convert into torch shape (C, H, W) -> (1, 84, 84)
# Convert to float, rescale, convert to torch tensor (this doesn't require a copy)
#frame = frame.astype(np.float)
frame = np.ascontiguousarray(frame, dtype=np.float32) / 255
frame = torch.from_numpy(frame)
# Add a batch dimension -> (B, C, H, W)
return frame.unsqueeze(0)
def lmn_input(obs):
net_input = np.expand_dims(obs, 0)
net_input = torch.from_numpy(net_input)
return net_input
def build_qnetwork(env_actions, learning_rate, input_shape, network, device):
if network == 'cnn':
qnet = CNN(env_actions)
else:
# model = 'linear'
qnet = LinearMapNet(input_shape, env_actions)
return qnet.to(device), torch.optim.RMSprop(qnet.parameters(), lr=learning_rate)
def fit(qnet, qnet_optim, qtarget_net, loss_func, \
frames, actions, rewards, next_frames, dones, \
gamma, env_actions, device):
# compute action-value for frames at timestep t using q-network
frames_t = torch.cat(frames).to(device)
actions = torch.tensor(actions, device=device)
q_t = qnet(frames_t) # q_t tensor has shape (batch, env_actions)
q_t_selected = torch.sum(q_t * torch.nn.functional.one_hot(actions, env_actions), 1)
# compute td targets for frames at timestep t + 1 using q-target network
dones = torch.tensor(dones, device=device)
rewards = torch.tensor(rewards, device=device)
frames_tp1 = torch.cat(next_frames).to(device)
q_tp1_best = qtarget_net(frames_tp1).max(1)[0].detach()
ones = torch.ones(dones.size(-1), device=device)
q_tp1_best = (ones - dones) * q_tp1_best
q_targets = rewards + gamma * q_tp1_best
# td error
loss = loss_func(q_t_selected, q_targets)
qnet_optim.zero_grad()
loss.backward()
qnet_optim.step()
#return loss.item()
def update_target_network(qnet, qtarget_net):
qtarget_net.load_state_dict(qnet.state_dict())
def save_model(qnet, episode, path):
torch.save(qnet.state_dict(), os.path.join(path, 'qnetwork_{}.pt'.format(episode)))
def plot_rewards(chosen_agents, agents_returns, num_episodes, window):
num_intervals = int(num_episodes / window)
for agent, agent_total_returns in zip(chosen_agents, agents_returns):
print(len(agent_total_returns))
print("\n{} lander average reward = {}".format(agent, sum(agent_total_returns) / num_episodes))
l = []
for j in range(num_intervals):
l.append(round(np.mean(agent_total_returns[j * 100 : (j + 1) * 100]), 1))
plt.plot(range(0, num_episodes, window), l)
plt.xlabel("Episodes")
plt.ylabel("Reward per {} episodes".format(window))
plt.title("RL Lander(s)")
plt.legend(chosen_agents, loc="lower right")
plt.show()