-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolygon.py
68 lines (57 loc) · 2.2 KB
/
polygon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from mathobject import MathObject
import config
from config import LABEL_FONT
from vector import Vector
import math
class Polygon(MathObject):
"""A polygon."""
@staticmethod
def rectangle(x,y,w,h):
return Polygon([(x,y), (x+w,y), (x+w,y+h), (x,y+h)])
@staticmethod
def square(x,y,s):
return Polygon.rectangle(x,y,s,s)
@staticmethod
def circle(x,y,r):
# circumference = 2 * math.pi * r
# K = 10
# num_segments = int(circumference / K)
num_segments = 100
points = []
for i in range(num_segments):
angle = i / num_segments * (2 * math.pi)
px = r * math.cos(angle) + x
py = r * math.sin(angle) + y
points.append((px,py))
return Polygon(points)
@staticmethod
def triangle(x,y,w,h):
return Polygon([(x,y), (x+w,y), (x+w/2,y+h)])
def __init__(self, points, label=None):
super().__init__()
self._points = points
self._label = label
self._points_transformed = [config.command_interpretter.initial_transform * Vector(p[0], p[1]) for p in self._points]
def copy(self):
return Polygon(self._points)
def draw(self):
super().draw()
self._points_transformed = [config.command_interpretter.initial_transform * Vector(p[0], p[1]) for p in self._points]
xys = [p for pt in self._points_transformed for p in pt]
p = self._canvas.create_polygon(
*xys,
fill=self._color
)
self._canvas_items.append(p)
if self._label is not None:
text_x = sum([p[0] for p in self._points]) / len(self._points)
text_y = sum([p[1] for p in self._points]) / len(self._points)
pt_transformed = config.command_interpretter.initial_transform * Vector(text_x, text_y)
t = self._canvas.create_text(
pt_transformed[0],
pt_transformed[1],
text=self._label,
font=LABEL_FONT,
fill='#fff', # label and polygon have to be different colors
)
self._canvas_items.append(t)