-
Notifications
You must be signed in to change notification settings - Fork 36
/
run_benchmark.py
executable file
·147 lines (106 loc) · 4.07 KB
/
run_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python3
import argparse
import pickle
from pathlib import Path
from typing import Tuple
import cv2
import megengine as mge
import numpy as np
import skimage.metrics
from tqdm import tqdm
from models.net_mge import Network
from utils import RawUtils
from benchmark import BenchmarkLoader, RawMeta
class KSigma:
def __init__(self, K_coeff: Tuple[float, float], B_coeff: Tuple[float, float, float], anchor: float, V: float = 959.0):
self.K = np.poly1d(K_coeff)
self.Sigma = np.poly1d(B_coeff)
self.anchor = anchor
self.V = V
def __call__(self, img_01, iso: float, inverse=False):
k, sigma = self.K(iso), self.Sigma(iso)
k_a, sigma_a = self.K(self.anchor), self.Sigma(self.anchor)
cvt_k = k_a / k
cvt_b = (sigma / (k ** 2) - sigma_a / (k_a ** 2)) * k_a
img = img_01 * self.V
if not inverse:
img = img * cvt_k + cvt_b
else:
img = (img - cvt_b) / cvt_k
return img / self.V
class Denoiser:
def __init__(self, model_path: Path, ksigma: KSigma, inp_scale=256.0):
net = Network()
with model_path.open('rb') as f:
states = pickle.load(f)
net.load_state_dict(states)
net.eval()
self.net = net
self.ksigma = ksigma
self.inp_scale = inp_scale
def pre_process(self, bayer_01: np.ndarray):
rggb = RawUtils.bayer2rggb(bayer_01)
rggb = rggb.clip(0, 1)
H, W = rggb.shape[:2]
ph, pw = (32-(H % 32))//2, (32-(W % 32))//2
rggb = np.pad(rggb, [(ph, ph), (pw, pw), (0, 0)], 'constant')
inp_rggb = rggb.transpose(2, 0, 1)[np.newaxis]
self.ph, self.pw = ph, pw
return inp_rggb
def run(self, bayer_01: np.ndarray, iso: float):
inp_rggb_01 = self.pre_process(bayer_01)
inp_rggb = self.ksigma(inp_rggb_01, iso) * self.inp_scale
inp = np.ascontiguousarray(inp_rggb)
pred = self.net(inp)[0] / self.inp_scale
# import ipdb; ipdb.set_trace()
pred = pred.numpy().transpose(1, 2, 0)
pred = self.ksigma(pred, iso, inverse=True)
ph, pw = self.ph, self.pw
pred = pred[ph:-ph, pw:-pw]
return RawUtils.rggb2bayer(pred)
def run_benchmark(model_path, bm_loader: BenchmarkLoader):
ksigma = KSigma(
K_coeff=[0.0005995267, 0.00868861],
B_coeff=[7.11772e-7, 6.514934e-4, 0.11492713],
anchor=1600,
)
denoiser = Denoiser(model_path, ksigma)
PSNRs, SSIMs = [], []
bar = tqdm(bm_loader)
for input_bayer, gt_bayer, meta in bar:
bar.set_description(meta.name)
assert meta.bayer_pattern == 'BGGR'
input_bayer, gt_bayer = RawUtils.bggr2rggb(input_bayer, gt_bayer)
pred_bayer = denoiser.run(input_bayer, iso=meta.ISO)
inp_rgb, pred_rgb, gt_rgb = RawUtils.bayer2rgb(
input_bayer, pred_bayer, gt_bayer,
wb_gain=meta.wb_gain, CCM=meta.CCM,
)
inp_rgb, pred_rgb, gt_rgb = RawUtils.bggr2rggb(inp_rgb, pred_rgb, gt_rgb)
bar.set_description(meta.name+' ✓')
psnrs = []
ssims = []
for x0, y0, x1, y1 in meta.ROIs:
pred_patch = pred_rgb[y0:y1, x0:x1]
gt_patch = gt_rgb[y0:y1, x0:x1]
psnr = skimage.metrics.peak_signal_noise_ratio(gt_patch, pred_patch)
ssim = skimage.metrics.structural_similarity(gt_patch, pred_patch, multichannel=True)
psnrs.append(float(psnr))
ssims.append(float(ssim))
bar.set_description(meta.name+' ✓✓')
PSNRs = PSNRs + psnrs # list append
SSIMs = SSIMs + ssims
mean_psnr = np.mean(PSNRs)
mean_ssim = np.mean(SSIMs)
print("mean PSNR:", mean_psnr)
print("mean SSIM:", mean_ssim)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('model', type=Path)
parser.add_argument('--benchmark', type=Path)
args = parser.parse_args()
bm_loader = BenchmarkLoader(args.benchmark.resolve())
run_benchmark(args.model, bm_loader)
if __name__ == "__main__":
main()
# vim: ts=4 sw=4 sts=4 expandtab