forked from huawei-noah/HEBO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombo_exp.py
232 lines (195 loc) · 9.41 KB
/
combo_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved. Redistribution and use in source and binary
# forms, with or without modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
# disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
# following disclaimer in the documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import time
from typing import Dict, Any, Optional, Tuple
import numpy as np
import pandas as pd
import torch
from torch import Tensor
from resources.COMBO.experiments.exp_utils import sample_init_points
from utils.utils_misc import log
from core.algos.common_exp import EDAExp
from core.algos.utils import is_pareto_efficient, Res, get_history_values_from_res
from core.sessions.utils import get_design_prop
from utils.utils_save import save_w_pickle
class COMBORes(Res):
pass
class COMBOExp(EDAExp):
""" Class associated to COMBO to solve QoR minimization: https://arxiv.org/pdf/1902.00448.pdf """
color = 'cyan'
def __init__(self, design_file: str, seq_length: int, mapping: str, action_space_id: str,
library_file: str,
abc_binary: str,
seed: int, n_initial: int, lamda: Optional[float],
lut_inputs: int = 4,
ref_abc_seq: Optional[str] = None):
"""
Args:
design_file: path to the design
seq_length: length of the optimal sequence to find
mapping: either scl of fpga mapping
action_space_id: id of action space defining available abc optimisation operations
library_file: library file (asap7.lib)
abc_binary: (probably yosys-abc)
lut_inputs: number of LUT inputs (2 < num < 33)
ref_abc_seq: sequence of operations to apply to initial design to get reference performance
seed: reproducibility seed
n_initial: number of initial points to test before building first surrogate model
lamda: COMBO parameter
"""
super().__init__(design_file=design_file, seq_length=seq_length, mapping=mapping,
action_space_id=action_space_id, library_file=library_file, abc_binary=abc_binary,
lut_inputs=lut_inputs, ref_abc_seq=ref_abc_seq)
self.seed = seed
np.random.seed(self.seed)
self.n_initial = n_initial
self.lamda = lamda
self.ref_time = time.time()
self.samples_X = []
self.obj_1_s = []
self.obj_2_s = []
self.n_vertices = np.array([self.action_space_length] * self.seq_length)
self.suggested_init = torch.empty(0).long()
self.suggested_init = torch.cat([self.suggested_init,
sample_init_points(self.n_vertices,
self.n_initial - self.suggested_init.size(0),
self.seed).long()], dim=0)
self.adjacency_mat = []
self.fourier_freq = []
self.fourier_basis = []
self.random_seed_info = str(seed).zfill(4)
for i in range(len(self.n_vertices)):
n_v = self.n_vertices[i]
adjmat = torch.ones((n_v, n_v)) - torch.diag(torch.ones(n_v))
self.adjacency_mat.append(adjmat)
laplacian = torch.diag(torch.sum(adjmat, dim=0)) - adjmat
eigval, eigvec = torch.symeig(laplacian, eigenvectors=True)
self.fourier_freq.append(eigval)
self.fourier_basis.append(eigvec)
self.n_evals = 0
def get_config(self) -> Dict[str, Any]:
config = super(COMBOExp, self).get_config()
config['seed'] = self.seed
config['n_initial'] = self.n_initial
config['lamda'] = self.lamda
return config
@property
def meta_method_id(self) -> str:
""" Id for the meta method (will appear in the result-path) """
return 'BO'
@property
def method_id(self) -> str:
""" Id for the method (will appear in the result-path) """
return 'COMBO'
def exp_path(self) -> str:
return os.path.join(super(COMBOExp, self).exp_path(), str(self.seed))
def exp_id(self) -> str:
eid = f'{self.method_id}_n-init-{self.n_initial}'
if self.lamda is not None:
eid += f'_lamda-{self.lamda:g}'
return eid
def run(self, verbose: bool = False):
raise NotImplementedError()
def evaluate(self, x: Tensor) -> Tensor:
"""
Args:
x: new point to evaluate
"""
assert x.numel() == len(self.n_vertices)
self.n_evals += 1
# self.log(f"{self.n_evals:3d}. Evaluate sequence {x} on design {self.design_name}: ", end="")
if x.dim() == 2:
x = x.flatten()
X = x.detach().cpu().numpy().astype(int)
self.samples_X.append(X)
sequence = [self.action_space[ind].act_str for ind in X]
obj_1, obj_2 = get_design_prop(seq=sequence, design_file=self.design_file, mapping=self.mapping,
library_file=self.library_file, abc_binary=self.abc_binary,
lut_inputs=self.lut_inputs)
self.obj_1_s.append(obj_1 / self.ref_1)
self.obj_2_s.append(obj_2 / self.ref_2)
return torch.tensor([obj_1 / self.ref_1 + obj_2 / self.ref_2]).to(x)
def build_res(self, verbose: bool = False) -> COMBORes:
objs = np.stack([self.obj_1_s, self.obj_2_s]).T
self.samples_X = np.array(self.samples_X)
mask_pareto = is_pareto_efficient(objs)
history_x = self.samples_X.copy()
history_f = objs.copy()
samples = self.samples_X[mask_pareto]
objs = objs[mask_pareto]
res = COMBORes(X=samples, F=objs, history_x=history_x, history_f=history_f)
self.exec_time = time.time() - self.ref_time
if verbose:
self.log(f"Took {self.exec_time} to optimise {self.design_name}")
return res
def process_results(self, res: COMBORes) -> pd.DataFrame:
seq_id = []
obj_1 = []
ratio_1 = []
obj_2 = []
ratio_2 = []
for seq_ind, func_value in zip(res.X, res.F):
seq_id.append(' | '.join([self.action_space[ind].act_id for ind in seq_ind]))
ratio_1.append(func_value[0])
ratio_2.append(func_value[1])
obj_1.append(ratio_1[-1] * self.ref_1)
obj_2.append(ratio_2[-1] * self.ref_2)
pd_res = pd.DataFrame()
pd_res['seq_id'] = seq_id
pd_res[self.obj1_id] = obj_1
pd_res[self.obj2_id] = obj_2
pd_res['ratio ' + self.obj1_id] = ratio_1
pd_res['ratio ' + self.obj2_id] = ratio_2
pd_res['qor'] = np.array(ratio_1) + np.array(ratio_2)
return pd_res.sort_values('qor')
def save_results(self, res: COMBORes) -> None:
save_path = self.exp_path()
log(
f'{self.exp_id()} -> Save to {save_path} | Best QoR improvement over {self.ref_abc_seq}:'
f' {(2 - res.F.sum(-1).min()) / 2 * 100:.2f}')
os.makedirs(save_path, exist_ok=True)
# save table of results
pd_res = self.process_results(res)
res_path = os.path.join(save_path, 'res.csv')
pd_res.to_csv(res_path)
# save execution time
np.save(os.path.join(save_path, 'exec_time.npy'), np.array(self.exec_time))
# save config
save_w_pickle(self.get_config(), save_path, filename='config.pkl')
# save res
save_w_pickle(res, save_path, 'res.pkl')
log(f'{self.exp_id()} -> Saved!')
def exists(self) -> bool:
""" Check if experiment already exists """
save_path = self.exp_path()
paths_to_check = [
os.path.join(save_path, 'res.csv'),
os.path.join(save_path, 'exec_time.npy'),
os.path.join(save_path, 'config.pkl'),
os.path.join(save_path, 'res.pkl')
]
return np.all(list(map(lambda p: os.path.exists(p), paths_to_check)))
@staticmethod
def get_history_values(res: COMBORes) -> Tuple[np.ndarray, np.ndarray]:
return get_history_values_from_res(res)
def log(self, msg: str, end=None) -> None:
header = f'{self.method_id} | {self.design_name}'
log(msg, header=header, end=end)