Skip to content

Latest commit

 

History

History
73 lines (48 loc) · 2.14 KB

README.md

File metadata and controls

73 lines (48 loc) · 2.14 KB

License CLA Team Status

PRs Welcome Join chat

Padatious

An efficient and agile neural network intent parser. Padatious is a core component of Mycroft AI.

Features

  • Intents are easy to create
  • Requires a relatively small amount of data
  • Intents run independent of each other
  • Easily extract entities (ie. Find the nearest gas station -> place: gas station)
  • Fast training with a modular approach to neural networks

Getting Started

Installing

Padatious requires the following native packages to be installed:

  • FANN (with dev headers)
  • Python development headers
  • pip3
  • swig

Ubuntu:

sudo apt-get install libfann-dev python3-dev python3-pip swig libfann-dev python3-fann2

Next, install Padatious via pip3:

pip3 install padatious

Padatious also works in Python 2 if you are unable to upgrade.

Example

Here's a simple example of how to use Padatious:

program.py

from padatious import IntentContainer

container = IntentContainer('intent_cache')
container.add_intent('hello', ['Hi there!', 'Hello.'])
container.add_intent('goodbye', ['See you!', 'Goodbye!'])
container.add_intent('search', ['Search for {query} (using|on) {engine}.'])
container.train()

print(container.calc_intent('Hello there!'))
print(container.calc_intent('Search for cats on CatTube.'))

container.remove_intent('goodbye')

Run with:

python3 program.py

Learn More

Further documentation can be found at https://mycroft.ai/documentation/padatious/