-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrulebased.tex
96 lines (82 loc) · 2.96 KB
/
rulebased.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage{default}
\usepackage{caption}
\begin{document}
\begin{frame}{Dependency Path Based Relation Extraction}{Peculiarity of Numerical Relations}
\begin{itemize}
\item Analyzing a number of sentences expressing numerical relations lead to several insights as already discussed. \\
\item \textbf{Keywords} We can expect presence of certain keywords that might help in identifying relations.\\
\item \textbf{Modifiers} A large number of false positives stem out of mentions where a change in the numerical attribute is mentioned.
\end{itemize}
\end{frame}
\begin{frame}{Dependency Path Based Relation Extraction}{Dependencies}
\begin{itemize}
\item Dependencies: Grammatical relation between two words, governer and dependent. \\
\item ``The red ball was lost'' \\
\item \begin{itemize}
\item \textbf{amod(ball,3,red,2)} ``Red'' is an adjective for ``ball''
\item \textbf{det(ball,3,The,1)} ``the'' is a determiner of ``ball''
\item \textbf{nsubjpass(lost,5,ball,3)} ``ball is the subject of lost''
\item \textbf{auxpass(lost,5,was,4)} ``was is an auxiliary of lost''
\end {itemize}
\end{itemize}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1281 118,scale=0.25]{./imgs/dep.png}
% dep.png: 1281x118 pixel, 72dpi, 45.19x4.16 cm, bb=0 0 1281 118
\end{figure}
\end{frame}
\begin{frame}{Dependency Path Based Relation Extraction}
\begin{itemize}
\item Given a Country-Number pair, extract the shortest undirected path between them in the dependency graph.
\end{itemize}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 990 149,scale=0.3]{./dep.png}
% dep.png: 990x149 pixel, 72dpi, 34.92x5.26 cm, bb=0 0 990 149
\end{figure}
\begin{itemize}
\item Path(Zambia - 15,200,000) = \{Zambia, population, 15,200,000\}
\item For a match, the path:
\begin{itemize}
\item Should have one of the keywords
\item Should not have a modifier
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Dependency Path Based Relation Extraction}{Example}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1292 228,scale=0.25]{./dep_pos.png}
% dep_pos.png: 1292x228 pixel, 72dpi, 45.57x8.04 cm, bb=0 0 1292 228
\caption*{Extracted}
\end{figure}
\begin{figure}[h]
\centering
\includegraphics[bb=0 0 1280 219,scale=0.25]{./dep_neg.png}
% dep_neg.png: 1280x219 pixel, 72dpi, 45.15x7.72 cm, bb=0 0 1280 219
\caption*{Not Extracted}
\end{figure}
\end{frame}
\begin{frame}
\begin{itemize}
\item The extractor was applied to 30 sentences expressing 23 different relations. \\
\item \resizebox{\linewidth}{!}{% Resize table to fit within \linewidth horizontally
\begin{tabular}{|l|l|l|}
\hline
& Relations Present & Relations not Present (False positives) \\
\hline
Extracted & 16 & 17 \\
\hline
Not Extracted & 7 & N/A \\
\hline
\end{tabular}}
\begin{itemize}
\item Precision: 48.4\%
\item Recall: 69.6\%
\end{itemize}
\item The precision will increase further on applying unit based pruning.
\end{itemize}
\end{frame}
\end{document}