forked from DamiPayne/AI-Music-Composer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn.py
189 lines (158 loc) · 7.31 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os, sys
import argparse
import time
import itertools
import cPickle
import logging
import random
import string
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import nottingham_util
import util
from model import Model, NottinghamModel
def get_config_name(config):
def replace_dot(s): return s.replace(".", "p")
return "nl_" + str(config.num_layers) + "_hs_" + str(config.hidden_size) + \
replace_dot("_mc_{}".format(config.melody_coeff)) + \
replace_dot("_dp_{}".format(config.dropout_prob)) + \
replace_dot("_idp_{}".format(config.input_dropout_prob)) + \
replace_dot("_tb_{}".format(config.time_batch_len))
class DefaultConfig(object):
# model parameters
num_layers = 2
hidden_size = 200
melody_coeff = 0.5
dropout_prob = 0.5
input_dropout_prob = 0.8
cell_type = 'lstm'
# learning parameters
max_time_batches = 9
time_batch_len = 128
learning_rate = 5e-3
learning_rate_decay = 0.9
num_epochs = 250
# metadata
dataset = 'softmax'
model_file = ''
def __repr__(self):
return """Num Layers: {}, Hidden Size: {}, Melody Coeff: {}, Dropout Prob: {}, Input Dropout Prob: {}, Cell Type: {}, Time Batch Len: {}, Learning Rate: {}, Decay: {}""".format(self.num_layers, self.hidden_size, self.melody_coeff, self.dropout_prob, self.input_dropout_prob, self.cell_type, self.time_batch_len, self.learning_rate, self.learning_rate_decay)
def train_model():
np.random.seed()
parser = argparse.ArgumentParser(description='Script to train and save a model.')
parser.add_argument('--dataset', type=str, default='softmax',
# choices = ['bach', 'nottingham', 'softmax'],
choices = ['softmax'])
parser.add_argument('--model_dir', type=str, default='models')
parser.add_argument('--run_name', type=str, default=time.strftime("%m%d_%H%M"))
args = parser.parse_args()
if args.dataset == 'softmax':
resolution = 480
time_step = 120
model_class = NottinghamModel
with open(nottingham_util.PICKLE_LOC, 'r') as f:
pickle = cPickle.load(f)
chord_to_idx = pickle['chord_to_idx']
input_dim = pickle["train"][0].shape[1]
print 'Finished loading data, input dim: {}'.format(input_dim)
else:
raise Exception("Other datasets not yet implemented")
initializer = tf.random_uniform_initializer(-0.1, 0.1)
best_config = None
best_valid_loss = None
# set up run dir
run_folder = os.path.join(args.model_dir, args.run_name)
if os.path.exists(run_folder):
raise Exception("Run name {} already exists, choose a different one", format(run_folder))
os.makedirs(run_folder)
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler())
logger.addHandler(logging.FileHandler(os.path.join(run_folder, "training.log")))
grid = {
"dropout_prob": [0.5],
"input_dropout_prob": [0.8],
"melody_coeff": [0.5],
"num_layers": [2],
"hidden_size": [200],
"num_epochs": [250],
"learning_rate": [5e-3],
"learning_rate_decay": [0.9],
"time_batch_len": [128],
}
# Generate product of hyperparams
runs = list(list(itertools.izip(grid, x)) for x in itertools.product(*grid.itervalues()))
logger.info("{} runs detected".format(len(runs)))
for combination in runs:
config = DefaultConfig()
config.dataset = args.dataset
config.model_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(12)) + '.model'
for attr, value in combination:
setattr(config, attr, value)
if config.dataset == 'softmax':
data = util.load_data('', time_step, config.time_batch_len, config.max_time_batches, nottingham=pickle)
config.input_dim = data["input_dim"]
else:
raise Exception("Other datasets not yet implemented")
logger.info(config)
config_file_path = os.path.join(run_folder, get_config_name(config) + '.config')
with open(config_file_path, 'w') as f:
cPickle.dump(config, f)
with tf.Graph().as_default(), tf.Session() as session:
with tf.variable_scope("model", reuse=None):
train_model = model_class(config, training=True)
with tf.variable_scope("model", reuse=True):
valid_model = model_class(config, training=False)
saver = tf.train.Saver(tf.all_variables(), max_to_keep=40)
tf.initialize_all_variables().run()
# training
early_stop_best_loss = None
start_saving = False
saved_flag = False
train_losses, valid_losses = [], []
start_time = time.time()
for i in range(config.num_epochs):
loss = util.run_epoch(session, train_model,
data["train"]["data"], training=True, testing=False)
train_losses.append((i, loss))
if i == 0:
continue
logger.info('Epoch: {}, Train Loss: {}, Time Per Epoch: {}'.format(\
i, loss, (time.time() - start_time)/i))
valid_loss = util.run_epoch(session, valid_model, data["valid"]["data"], training=False, testing=False)
valid_losses.append((i, valid_loss))
logger.info('Valid Loss: {}'.format(valid_loss))
if early_stop_best_loss == None:
early_stop_best_loss = valid_loss
elif valid_loss < early_stop_best_loss:
early_stop_best_loss = valid_loss
if start_saving:
logger.info('Best loss so far encountered, saving model.')
saver.save(session, os.path.join(run_folder, config.model_name))
saved_flag = True
elif not start_saving:
start_saving = True
logger.info('Valid loss increased for the first time, will start saving models')
saver.save(session, os.path.join(run_folder, config.model_name))
saved_flag = True
if not saved_flag:
saver.save(session, os.path.join(run_folder, config.model_name))
# set loss axis max to 20
axes = plt.gca()
if config.dataset == 'softmax':
axes.set_ylim([0, 2])
else:
axes.set_ylim([0, 100])
plt.plot([t[0] for t in train_losses], [t[1] for t in train_losses])
plt.plot([t[0] for t in valid_losses], [t[1] for t in valid_losses])
plt.legend(['Train Loss', 'Validation Loss'])
chart_file_path = os.path.join(run_folder, get_config_name(config) + '.png')
plt.savefig(chart_file_path)
plt.clf()
logger.info("Config {}, Loss: {}".format(config, early_stop_best_loss))
if best_valid_loss == None or early_stop_best_loss < best_valid_loss:
logger.info("Found best new model!")
best_valid_loss = early_stop_best_loss
best_config = config
logger.info("Best Config: {}, Loss: {}".format(best_config, best_valid_loss))