-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutm.py
480 lines (350 loc) · 13.7 KB
/
utm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
'''
This module converts between lat long and UTM coordinates.
Geographic coordinates are entered and displayed in degrees.
Negative numbers indicate West longitudes and South latitudes.
UTM coordinates are entered and displayed in meters.
The ellipsoid model used for computations is WGS84.
Usage:
import latlonutm as ll
[[northing, easting], zone, hemi] = ll.LatLonToUtm(lat, lon)
[lat, lon] = ll.UtmToLatLon(northing, easting, zone, southhemi)
Copied from: nenadsprojects
https://nenadsprojects.wordpress.com/2012/12/27/latitude-and-longitude-utm-conversion/
Converted from javascript by Nenad Uzunovic
Original source
http://home.hiwaay.net/~taylorc/toolbox/geography/geoutm.html
'''
import math
# Ellipsoid model constants (actual values here are for WGS84)
sm_a = 6378137.0
sm_b = 6356752.314
sm_EccSquared = 6.69437999013e-03
UTMScaleFactor = 0.9996
def DegToFloat(degrees, minutes, seconds):
'''
Converts angle in format deg,min,sec to a floating point number
'''
if (degrees>=0):
return (degrees) + (minutes/60.0) + (seconds/3600.0)
else:
return (degrees) - (minutes/60.0) - (seconds/3600.0)
def DegToRad(deg):
'''
Converts degrees to radians.
'''
return (deg / 180.0 * math.pi)
def RadToDeg(rad):
'''
Converts radians to degrees.
'''
return (rad / math.pi * 180.0)
def ArcLengthOfMeridian(phi):
'''
Computes the ellipsoidal distance from the equator to a point at a
given latitude.
Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
Inputs:
phi - Latitude of the point, in radians.
Globals:
sm_a - Ellipsoid model major axis.
sm_b - Ellipsoid model minor axis.
Outputs:
The ellipsoidal distance of the point from the equator, in meters.
'''
# Precalculate n
n = (sm_a - sm_b) / (sm_a + sm_b)
# Precalculate alpha
alpha = ((sm_a + sm_b) / 2.0) \
* (1.0 + (math.pow (n, 2.0) / 4.0) + (math.pow (n, 4.0) / 64.0))
# Precalculate beta
beta = (-3.0 * n / 2.0) + (9.0 * math.pow (n, 3.0) / 16.0) \
+ (-3.0 * math.pow (n, 5.0) / 32.0)
# Precalculate gamma
gamma = (15.0 * math.pow (n, 2.0) / 16.0) \
+ (-15.0 * math.pow (n, 4.0) / 32.0)
# Precalculate delta
delta = (-35.0 * math.pow (n, 3.0) / 48.0) \
+ (105.0 * math.pow (n, 5.0) / 256.0)
# Precalculate epsilon
epsilon = (315.0 * math.pow (n, 4.0) / 512.0)
# Now calculate the sum of the series and return
result = alpha \
* (phi + (beta * math.sin (2.0 * phi)) \
+ (gamma * math.sin (4.0 * phi)) \
+ (delta * math.sin (6.0 * phi)) \
+ (epsilon * math.sin (8.0 * phi)))
return result
def UTMCentralMeridian(zone):
'''
Determines the central meridian for the given UTM zone.
Inputs:
zone - An integer value designating the UTM zone, range [1,60].
Outputs:
The central meridian for the given UTM zone, in radians, or zero
if the UTM zone parameter is outside the range [1,60].
Range of the central meridian is the radian equivalent of [-177,+177].
'''
return DegToRad(-183.0 + (zone * 6.0))
def FootpointLatitude(y):
'''
Computes the footpoint latitude for use in converting transverse
Mercator coordinates to ellipsoidal coordinates.
Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
Inputs:
y - The UTM northing coordinate, in meters.
Outputs:
The footpoint latitude, in radians.
'''
# Precalculate n (Eq. 10.18)
n = (sm_a - sm_b) / (sm_a + sm_b)
# Precalculate alpha_ (Eq. 10.22)
# (Same as alpha in Eq. 10.17)
alpha_ = ((sm_a + sm_b) / 2.0) \
* (1 + (math.pow (n, 2.0) / 4) + (math.pow (n, 4.0) / 64))
# Precalculate y_ (Eq. 10.23)
y_ = y / alpha_
# Precalculate beta_ (Eq. 10.22)
beta_ = (3.0 * n / 2.0) + (-27.0 * math.pow (n, 3.0) / 32.0) \
+ (269.0 * math.pow (n, 5.0) / 512.0)
# Precalculate gamma_ (Eq. 10.22)
gamma_ = (21.0 * math.pow (n, 2.0) / 16.0) \
+ (-55.0 * math.pow (n, 4.0) / 32.0)
# Precalculate delta_ (Eq. 10.22)
delta_ = (151.0 * math.pow (n, 3.0) / 96.0) \
+ (-417.0 * math.pow (n, 5.0) / 128.0)
# Precalculate epsilon_ (Eq. 10.22)
epsilon_ = (1097.0 * math.pow (n, 4.0) / 512.0)
# Now calculate the sum of the series (Eq. 10.21)
result = y_ + (beta_ * math.sin (2.0 * y_)) \
+ (gamma_ * math.sin (4.0 * y_)) \
+ (delta_ * math.sin (6.0 * y_)) \
+ (epsilon_ * math.sin (8.0 * y_))
return result
def MapLatLonToXY(phi, lambda_pt, lambda_ctr):
'''
Converts a latitude/longitude pair to x and y coordinates in the
Transverse Mercator projection. Note that Transverse Mercator is not
the same as UTM; a scale factor is required to convert between them.
Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
Inputs:
phi - Latitude of the point, in radians.
lambda_pt - Longitude of the point, in radians.
lambda_ctr - Longitude of the central meridian to be used, in radians.
Outputs:
xy - A 2-element array containing the x and y coordinates
of the computed point.
'''
# Precalculate ep2
ep2 = (math.pow (sm_a, 2.0) - math.pow (sm_b, 2.0)) / math.pow (sm_b, 2.0)
# Precalculate nu2
nu2 = ep2 * math.pow (math.cos (phi), 2.0)
# Precalculate N
N = math.pow (sm_a, 2.0) / (sm_b * math.sqrt (1 + nu2))
# Precalculate t
t = math.tan (phi)
t2 = t * t
# tmp = (t2 * t2 * t2) - math.pow (t, 6.0)
# Precalculate l
l = lambda_pt - lambda_ctr
# Precalculate coefficients for l**n in the equations below
# so a normal human being can read the expressions for easting
# and northing
# -- l**1 and l**2 have coefficients of 1.0
l3coef = 1.0 - t2 + nu2
l4coef = 5.0 - t2 + 9 * nu2 + 4.0 * (nu2 * nu2)
l5coef = 5.0 - 18.0 * t2 + (t2 * t2) + 14.0 * nu2 \
- 58.0 * t2 * nu2
l6coef = 61.0 - 58.0 * t2 + (t2 * t2) + 270.0 * nu2 \
- 330.0 * t2 * nu2
l7coef = 61.0 - 479.0 * t2 + 179.0 * (t2 * t2) - (t2 * t2 * t2)
l8coef = 1385.0 - 3111.0 * t2 + 543.0 * (t2 * t2) - (t2 * t2 * t2)
# Calculate easting (x)
xy = [0.0, 0.0]
xy[0] = N * math.cos (phi) * l \
+ (N / 6.0 * math.pow (math.cos (phi), 3.0) * l3coef * math.pow (l, 3.0)) \
+ (N / 120.0 * math.pow (math.cos (phi), 5.0) * l5coef * math.pow (l, 5.0)) \
+ (N / 5040.0 * math.pow (math.cos (phi), 7.0) * l7coef * math.pow (l, 7.0))
# Calculate northing (y)
xy[1] = ArcLengthOfMeridian (phi) \
+ (t / 2.0 * N * math.pow (math.cos (phi), 2.0) * math.pow (l, 2.0)) \
+ (t / 24.0 * N * math.pow (math.cos (phi), 4.0) * l4coef * math.pow (l, 4.0)) \
+ (t / 720.0 * N * math.pow (math.cos (phi), 6.0) * l6coef * math.pow (l, 6.0)) \
+ (t / 40320.0 * N * math.pow (math.cos (phi), 8.0) * l8coef * math.pow (l, 8.0))
return xy
def MapXYToLatLon(x, y, lambda_ctr):
'''
Converts x and y coordinates in the Transverse Mercator projection to
a latitude/longitude pair. Note that Transverse Mercator is not
the same as UTM; a scale factor is required to convert between them.
Reference: Hoffmann-Wellenhof, B., Lichtenegger, H., and Collins, J.,
GPS: Theory and Practice, 3rd ed. New York: Springer-Verlag Wien, 1994.
Inputs:
x - The easting of the point, in meters.
y - The northing of the point, in meters.
lambda_ctr - Longitude of the central meridian to be used, in radians.
Outputs:
philambda - A 2-element containing the latitude and longitude
in radians.
Remarks:
The local variables Nf, nuf2, tf, and tf2 serve the same purpose as
N, nu2, t, and t2 in MapLatLonToXY, but they are computed with respect
to the footpoint latitude phif.
x1frac, x2frac, x2poly, x3poly, etc. are to enhance readability and
to optimize computations.
'''
# Get the value of phif, the footpoint latitude.
phif = FootpointLatitude (y)
# Precalculate ep2
ep2 = (math.pow (sm_a, 2.0) - math.pow (sm_b, 2.0)) \
/ math.pow (sm_b, 2.0)
# Precalculate cos (phif)
cf = math.cos (phif)
# Precalculate nuf2
nuf2 = ep2 * math.pow (cf, 2.0)
# Precalculate Nf and initialize Nfpow
Nf = math.pow (sm_a, 2.0) / (sm_b * math.sqrt (1 + nuf2))
Nfpow = Nf
# Precalculate tf
tf = math.tan (phif)
tf2 = tf * tf
tf4 = tf2 * tf2
# Precalculate fractional coefficients for x**n in the equations
# below to simplify the expressions for latitude and longitude.
x1frac = 1.0 / (Nfpow * cf)
Nfpow *= Nf # now equals Nf**2)
x2frac = tf / (2.0 * Nfpow)
Nfpow *= Nf # now equals Nf**3)
x3frac = 1.0 / (6.0 * Nfpow * cf)
Nfpow *= Nf # now equals Nf**4)
x4frac = tf / (24.0 * Nfpow)
Nfpow *= Nf # now equals Nf**5)
x5frac = 1.0 / (120.0 * Nfpow * cf)
Nfpow *= Nf # now equals Nf**6)
x6frac = tf / (720.0 * Nfpow)
Nfpow *= Nf # now equals Nf**7)
x7frac = 1.0 / (5040.0 * Nfpow * cf)
Nfpow *= Nf # now equals Nf**8)
x8frac = tf / (40320.0 * Nfpow)
# Precalculate polynomial coefficients for x**n.
# -- x**1 does not have a polynomial coefficient.
x2poly = -1.0 - nuf2
x3poly = -1.0 - 2 * tf2 - nuf2
x4poly = 5.0 + 3.0 * tf2 + 6.0 * nuf2 - 6.0 * tf2 * nuf2 \
- 3.0 * (nuf2 *nuf2) - 9.0 * tf2 * (nuf2 * nuf2)
x5poly = 5.0 + 28.0 * tf2 + 24.0 * tf4 + 6.0 * nuf2 + 8.0 * tf2 * nuf2
x6poly = -61.0 - 90.0 * tf2 - 45.0 * tf4 - 107.0 * nuf2 \
+ 162.0 * tf2 * nuf2
x7poly = -61.0 - 662.0 * tf2 - 1320.0 * tf4 - 720.0 * (tf4 * tf2)
x8poly = 1385.0 + 3633.0 * tf2 + 4095.0 * tf4 + 1575 * (tf4 * tf2)
# Calculate latitude
philambda = [0.0, 0.0]
philambda[0] = phif + x2frac * x2poly * (x * x) \
+ x4frac * x4poly * math.pow (x, 4.0) \
+ x6frac * x6poly * math.pow (x, 6.0) \
+ x8frac * x8poly * math.pow (x, 8.0)
# Calculate longitude
philambda[1] = lambda_ctr + x1frac * x \
+ x3frac * x3poly * math.pow (x, 3.0) \
+ x5frac * x5poly * math.pow (x, 5.0) \
+ x7frac * x7poly * math.pow (x, 7.0)
return philambda
def LatLonToUTMXY(lat, lon, zone):
'''
Converts a latitude/longitude pair to x and y coordinates in the
Universal Transverse Mercator projection.
Inputs:
lat - Latitude of the point, in radians.
lon - Longitude of the point, in radians.
zone - UTM zone to be used for calculating values for x and y.
If zone is less than 1 or greater than 60, the routine
will determine the appropriate zone from the value of lon.
Outputs:
xy - A 2-element array where the UTM x and y values will be stored.
'''
xy = MapLatLonToXY(lat, lon, UTMCentralMeridian(zone))
# Adjust easting and northing for UTM system.
xy[0] = xy[0] * UTMScaleFactor + 500000.0
xy[1] = xy[1] * UTMScaleFactor
if (xy[1] < 0.0):
xy[1] = xy[1] + 10000000.0
return xy
def UTMXYToLatLon(x, y, zone, southhemi):
'''
Converts x and y coordinates in the Universal Transverse Mercator
projection to a latitude/longitude pair.
Inputs:
x - The easting of the point, in meters.
y - The northing of the point, in meters.
zone - The UTM zone in which the point lies.
southhemi - True if the point is in the southern hemisphere;
false otherwise.
Outputs:
latlon - A 2-element array containing the latitude and
longitude of the point, in radians.
'''
x -= 500000.0
x /= UTMScaleFactor
# If in southern hemisphere, adjust y accordingly.
if (southhemi):
y -= 10000000.0
y /= UTMScaleFactor
cmeridian = UTMCentralMeridian(zone)
latlon = MapXYToLatLon(x, y, cmeridian)
return latlon
def LatLonToUtm(lat, lon):
'''
Converts lat lon to utm
Inputs:
lat - lattitude in degrees
lon - longitude in degrees
Outputs:
xy - utm x(easting), y(northing)
zone - utm zone
hemi - 'N' or 'S'
'''
if ((lon < -180.0) or (180.0 <= lon)):
print ('The longitude you entered is out of range -', lon)
print ('Please enter a number in the range [-180, 180).')
return 0
if ((lat < -90.0) or (90.0 < lat)):
print ('The latitude you entered is out of range -', lat)
print ('Please enter a number in the range [-90, 90].')
# Compute the UTM zone.
zone = math.floor ((lon + 180.0) / 6) + 1
# Convert
xy = LatLonToUTMXY (DegToRad(lat), DegToRad(lon), zone)
# Determine hemisphere
hemi = 'N'
if (lat < 0):
hemi = 'S'
return [xy, zone, hemi]
def UtmToLatLon(x, y, zone, hemi):
'''
Converts UTM coordinates to lat long
Inputs:
x - easting (in meters)
y - northing (in meters)
zone - UTM zone
hemi - 'N' or 'S'
Outputs:
latlong - [lattitude, longitude] (in degrees)
'''
if ((zone < 1) or (60 < zone)):
print ('The UTM zone you entered is out of range -', zone)
print ('Please enter a number in the range [1, 60].')
return 0
if ((hemi != 'N') and (hemi != 'S')):
print ('The hemisphere you entered is wrong -', hemi)
print ('Please enter N or S')
southhemi = False
if (hemi == 'S'):
southhemi = True
# Convert
latlon = UTMXYToLatLon(x, y, zone, southhemi)
# Convert to degrees
latlon[0] = RadToDeg(latlon[0])
latlon[1] = RadToDeg(latlon[1])
return latlon