You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository has been archived by the owner on Mar 21, 2024. It is now read-only.
Below is slightly modified example_device_reduce.cu example from CUB distribution, demonstrating an illegal memory access issue when trying to combine TransformInputIterator with DeviceReduce::Sum() to calculate number of non-zero elements in given array.
Reproducible example
/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************//****************************************************************************** * Simple example of DeviceReduce::Sum(). * * Sums an array of int keys. * * To compile using the command line: * nvcc -arch=sm_XX example_device_reduce.cu -I../.. -lcudart -O3 * ******************************************************************************/// Ensure printing of CUDA runtime errors to console
#defineCUB_STDERR
#include<stdio.h>
#include<cub/util_allocator.cuh>
#include<cub/device/device_reduce.cuh>
#include<cub/iterator/transform_input_iterator.cuh>
#include"../../test/test_util.h"usingnamespacecub;//---------------------------------------------------------------------// Globals, constants and typedefs//---------------------------------------------------------------------
CachingDeviceAllocator g_allocator(true); // Caching allocator for device memory//---------------------------------------------------------------------// Test generation//---------------------------------------------------------------------/** * Initialize problem*/voidInitialize(
int *h_in,
int num_items)
{
for (int i = 0; i < num_items; ++i)
h_in[i] = i;
}
/** * Compute solution*/voidSolve(
int *h_in,
int &h_reference,
int num_items)
{
for (int i = 0; i < num_items; ++i)
{
if (i == 0)
h_reference = h_in[0] != 0;
else
h_reference += h_in[i] != 0;
}
}
template<typename T>
structNonZeroOp
{
__host__ __device__ __forceinline__ booloperator()(const T& a) const {
return (a!=T(0));
}
};
//---------------------------------------------------------------------// Main//---------------------------------------------------------------------/** * Main*/intmain(int argc, char** argv)
{
int num_items = 46000 * 46000;
// Initialize command line
CommandLineArgs args(argc, argv);
// Print usageif (args.CheckCmdLineFlag("help"))
{
printf("%s ""[--device=<device-id>] ""\n", argv[0]);
exit(0);
}
// Initialize deviceCubDebugExit(args.DeviceInit());
printf("cub::DeviceReduce::Sum() %d items (%d-byte elements)\n",
num_items, (int) sizeof(int));
fflush(stdout);
// Allocate host arraysint* h_in = newint[num_items];
int h_reference;
// Initialize problem and solutionInitialize(h_in, num_items);
Solve(h_in, h_reference, num_items);
// Allocate problem device arraysint *d_in = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_in, sizeof(int) * num_items));
// Initialize device inputCubDebugExit(cudaMemcpy(d_in, h_in, sizeof(int) * num_items, cudaMemcpyHostToDevice));
// Allocate device output arrayint *d_out = NULL;
CubDebugExit(g_allocator.DeviceAllocate((void**)&d_out, sizeof(int) * 1));
cub::TransformInputIterator<bool, NonZeroOp<int>, constint*> iter(d_in, NonZeroOp<int>());
// Request and allocate temporary storagevoid *d_temp_storage = NULL;
size_t temp_storage_bytes = 0;
CubDebugExit(DeviceReduce::Sum(nullptr, temp_storage_bytes, iter, d_out, num_items));
CubDebugExit(g_allocator.DeviceAllocate(&d_temp_storage, temp_storage_bytes));
CubDebugExit(cudaDeviceSynchronize());
printf("CUDA error (before DeviceReduce::Sum) = %d\n", cudaGetLastError());
// RunCubDebugExit(DeviceReduce::Sum(d_temp_storage, temp_storage_bytes, iter, d_out, num_items));
CubDebugExit(cudaDeviceSynchronize());
printf("CUDA error (after DeviceReduce::Sum) = %d\n", cudaGetLastError());
// Check for correctness (and display results, if specified)int compare = CompareDeviceResults(&h_reference, d_out, 1, false, false);
printf("\t%s", compare ? "FAIL" : "PASS");
AssertEquals(0, compare);
// Cleanupif (h_in) delete[] h_in;
if (d_in) CubDebugExit(g_allocator.DeviceFree(d_in));
if (d_out) CubDebugExit(g_allocator.DeviceFree(d_out));
if (d_temp_storage) CubDebugExit(g_allocator.DeviceFree(d_temp_storage));
printf("\n\n");
return0;
}
Testted with CUB 1.16.0, on an A100 GPU. The problem is not there in case d_in used instead of iter in DeviceReduce::Sum calls (this is what original code in the example is doing). The problem is also not there in case number of elements in the input array decreased (note that here this number is close to INT_MAX).
The text was updated successfully, but these errors were encountered:
Hello @alexsamardzic and thank you for reporting the issue!
I can reproduce it with CUB 1.16.0 on A100. The issue is not there for recent versions of CUB. There's a chance that it was already addressed by #592 or #589. Could you please verify the latest release of CUB?
Below is slightly modified
example_device_reduce.cu
example from CUB distribution, demonstrating an illegal memory access issue when trying to combineTransformInputIterator
withDeviceReduce::Sum()
to calculate number of non-zero elements in given array.Reproducible example
Testted with CUB 1.16.0, on an A100 GPU. The problem is not there in case
d_in
used instead ofiter
inDeviceReduce::Sum
calls (this is what original code in the example is doing). The problem is also not there in case number of elements in the input array decreased (note that here this number is close toINT_MAX
).The text was updated successfully, but these errors were encountered: