|
5 | 5 | from typing import TYPE_CHECKING
|
6 | 6 |
|
7 | 7 | import numpy as np
|
8 |
| -from lcsvec import lccs_length |
| 8 | +import pytest |
| 9 | +from lcsvec import lccs, lccs_length |
9 | 10 | from torch import IntTensor, LongTensor, arange
|
10 | 11 |
|
11 | 12 | if TYPE_CHECKING:
|
12 | 13 | from numpy.typing import NDArray
|
13 | 14 |
|
14 | 15 |
|
| 16 | +TEST_CASES = [ |
| 17 | + (range(12), [8, 0, 1, 2, 8, 2, 3, 8, 4, 0], range(3)), |
| 18 | + (range(12), [8, 0, 9, 2, 8, 2, 7, 3, 4, 5], range(3, 6)), |
| 19 | + (range(12), [0, 1, 2, 3, 8, 9, 2, 3, 4, 5], range(4)), |
| 20 | + (range(-2, 10), [9, -1, 0, 1, 2, 9, 2, 4, 4, 5], range(-1, 3)), |
| 21 | +] |
| 22 | + |
| 23 | + |
15 | 24 | def _test_lccs(
|
16 | 25 | seq1: NDArray | IntTensor | LongTensor,
|
17 | 26 | seq2: NDArray | IntTensor | LongTensor,
|
18 | 27 | ref: list[int],
|
19 |
| -) -> None: |
20 |
| - lcs_len = lccs_length(seq1, seq2) |
21 |
| - assert lcs_len == len(ref) |
| 28 | +) -> True: |
| 29 | + lccs_ = lccs(seq1, seq2) |
| 30 | + lccs_len = lccs_length(seq1, seq2) |
22 | 31 |
|
| 32 | + assert lccs_len == len(ref) |
| 33 | + assert lccs_ == ref |
| 34 | + return True |
23 | 35 |
|
24 |
| -def test_lccs_numpy() -> None: |
| 36 | + |
| 37 | +@pytest.mark.parametrize("sequences", TEST_CASES) |
| 38 | +def test_lccs_numpy( |
| 39 | + sequences: tuple[list[int] | range, list[int] | range, list[int] | range], |
| 40 | +) -> None: |
25 | 41 | r"""Test the LCCS methods with numpy."""
|
26 |
| - seq1 = np.arange(0, 12) |
27 |
| - seq2 = np.array([8, 0, 1, 2, 8, 2, 3, 8, 4, 0], dtype=np.int64) |
28 |
| - ref = np.arange(0, 3).tolist() |
| 42 | + seq1, seq2, ref = sequences |
| 43 | + seq1 = ( |
| 44 | + np.arange(seq1.start, seq1.stop) |
| 45 | + if isinstance(seq1, range) |
| 46 | + else np.array(seq1, dtype=np.int64) |
| 47 | + ) |
| 48 | + seq2 = ( |
| 49 | + np.arange(seq2.start, seq2.stop) |
| 50 | + if isinstance(seq2, range) |
| 51 | + else np.array(seq2, dtype=np.int64) |
| 52 | + ) |
| 53 | + ref = ( |
| 54 | + np.arange(ref.start, ref.stop).tolist() |
| 55 | + if isinstance(ref, range) |
| 56 | + else np.array(ref, dtype=np.int64).tolist() |
| 57 | + ) |
29 | 58 |
|
30 |
| - lcs_len = lccs_length(seq1, seq2) |
31 |
| - assert lcs_len == len(ref) |
| 59 | + assert _test_lccs(seq1, seq2, ref) |
32 | 60 |
|
33 | 61 |
|
34 |
| -def test_lccs_torch() -> None: |
| 62 | +@pytest.mark.parametrize("sequences", TEST_CASES) |
| 63 | +def test_lccs_torch( |
| 64 | + sequences: tuple[list[int] | range, list[int] | range, list[int] | range], |
| 65 | +) -> None: |
35 | 66 | r"""Test the LCCS methods with pytorch."""
|
36 |
| - seq1 = arange(0, 12) |
37 |
| - seq2 = LongTensor([8, 0, 1, 2, 8, 2, 3, 8, 4, 0]) |
38 |
| - ref = arange(0, 3).tolist() |
| 67 | + seq1, seq2, ref = sequences |
| 68 | + seq1 = ( |
| 69 | + arange(seq1.start, seq1.stop) if isinstance(seq1, range) else LongTensor(seq1) |
| 70 | + ) |
| 71 | + seq2 = ( |
| 72 | + arange(seq2.start, seq2.stop) if isinstance(seq2, range) else LongTensor(seq2) |
| 73 | + ) |
| 74 | + ref = arange(ref.start, ref.stop) if isinstance(ref, range) else LongTensor(ref) |
| 75 | + ref = ref.tolist() |
39 | 76 |
|
40 |
| - lcs_len = lccs_length(seq1, seq2) |
41 |
| - assert lcs_len == len(ref) |
| 77 | + assert _test_lccs(seq1, seq2, ref) |
0 commit comments