-
Notifications
You must be signed in to change notification settings - Fork 19
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于 涟漪效应 的可解释性 #12
Comments
我们判断根因的依据其实是GPS而不是GRE。GPS不止考虑了GRE。我们认为一个属性组合是根因需要满足以下两个条件
|
为啥一个属性组合是根因需要满足条件 "3. 这个属性组合要满足GRE" GRE是从数据上观测来的,还是有理论证明呢 |
GRE是经验性的,不一定所有系统、所有故障都会满足。条件3相比于1和2可以理解为一个正则化项,因为数据中异常检测的不准确等噪声,只用1和2就很容易受到影响。 |
大佬,这个没法直观的理解,可以帮忙举个例子说明一下么,最近要完成一个project,需要参考使用Hotspot或者Squeeze |
HotSpot中RE也是经验性的发现。 |
您好!
整个论文在计算因的潜在得分时,利用的是 涟漪效应的原理,这里基于的理论是:如果属性值是因,则属性值的变化和包含属性值的样本的变化是一致的;即 Province = Beijing 下降60%,则Province = Beijing,ISP = China Mobile 和 Province = Beijing,ISP = China Unicom均会下降60%;然后反过来认为 符合涟漪效应的属性值就是根因;从这里看出,您将 涟漪效应和根因 作为了一对充分必要条件;
这里我们存在疑惑:如果属性值符合涟漪效应,属性值是根因的依据是什么?
The text was updated successfully, but these errors were encountered: