We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,大佬,有个疑问,想请教您下,若您有空了,请回复下,谢谢!疑问如下: cluster_list = list( [list( filter(lambda x: np.min(self.leaf_deviation_score[]) <= self.leaf_deviation_score[x] <= np.max( self.leaf_deviation_score[]), np.arange(len(self._f))) ) for _ in cluster_list] ) 在整个数据集中,若满足deviation-score的点,都会进入类中。这样做的理论是什么? 若这样子做非常好,个人感觉那倒不如直接在第1步就用deviation-score而不是偏差? 个人感觉去掉再聚类这一步(去掉上面代码),是不是更好些?这样完全是根据第一步的偏差以及第二步的deviation-score来判断叶子节点是否是异常(找出从哪些点出发,去找事件的根因)。 麻烦作者,给出解释,谢谢!
The text was updated successfully, but these errors were encountered:
No branches or pull requests
您好,大佬,有个疑问,想请教您下,若您有空了,请回复下,谢谢!疑问如下:
cluster_list = list(
[list(
filter(lambda x: np.min(self.leaf_deviation_score[]) <= self.leaf_deviation_score[x] <= np.max(
self.leaf_deviation_score[]), np.arange(len(self._f)))
)
for _ in cluster_list]
)
在整个数据集中,若满足deviation-score的点,都会进入类中。这样做的理论是什么?
若这样子做非常好,个人感觉那倒不如直接在第1步就用deviation-score而不是偏差?
个人感觉去掉再聚类这一步(去掉上面代码),是不是更好些?这样完全是根据第一步的偏差以及第二步的deviation-score来判断叶子节点是否是异常(找出从哪些点出发,去找事件的根因)。
麻烦作者,给出解释,谢谢!
The text was updated successfully, but these errors were encountered: