-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
54 lines (40 loc) · 1.87 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
from PIL import Image
import torch
from torchvision.transforms.functional import to_pil_image
import numpy as np
import random
import hashlib
from diffusers import StableDiffusionInpaintPipeline, EulerDiscreteScheduler
def _create_pipeline(model_id):
scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id,
scheduler=scheduler,
revision="fp16",
torch_dtype=torch.float16)
pipe = pipe.to("cuda")
pipe.enable_xformers_memory_efficient_attention()
return pipe
def _generate_inputs(im_path,mask_path, mask_id):
print("the mask id is ===", mask_id)
source_image = Image.open(im_path)
source_image = source_image.convert("RGB")
sd_mask = cv2.imread(mask_path,cv2.IMREAD_GRAYSCALE)
out = (sd_mask+(-mask_id*np.ones_like(sd_mask)))
mask=-(np.clip(1e10*np.multiply(out,out),a_min=0,a_max=255)-255)
pil_image = source_image.resize((512,512))
pil_mask = Image.fromarray(mask).resize((512,512))
return pil_image, pil_mask
def _augpaint(pipe, prompt, pil_image, pil_mask, num_images_per_prompt, guidance_scale, num_inference_steps,random_seed):
generator = torch.Generator(device="cuda").manual_seed(random_seed)
encoded_images = []
for i in range(num_images_per_prompt):
image = pipe(prompt=prompt, guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps, generator=generator,
image=pil_image, mask_image=pil_mask).images[0]
encoded_images.append(image.resize((550,825)))
return encoded_images
def _create_hash():
randint = random.randint(0, 100000000)
hash = hashlib.sha256(str(randint).encode("utf-8")).hexdigest()[:10]
return hash