Implement some reinforcement learning algorithms, test and visualize on Pacman under OpenAI's Gym environment.
- Python 3.6+
- gym
- matplotlib
- tensorflow
- keras
- mujoco_py (if you want to save replay)
- torch
- torchvision
- Run
python run.py --controller MC train
for training using Monte-Carlo control. The weight file will be saved asweights/mc.h5
. - Run
python run.py --controller MC --render --show_plot --evaluate_episodes 10 evaluate
for evaluation using Monte-Carlo control. It will render the Pacman environment and show the dynamic Q-value and reward plot at the same time.
Full usage: run.py [-h]
[--controller {MC,Sarsa,Sarsa_lambda,Q_learning,REINFORCE,ActorCritic,A3C,PPO}]
[--render] [--save_replay] [--save_plot] [--show_plot]
[--num_episodes NUM_EPISODES] [--batch_size BATCH_SIZE]
[--eva_interval EVA_INTERVAL]
[--evaluate_episodes EVALUATE_EPISODES] [--lr LR]
[--epsilon EPSILON] [--gamma GAMMA] [--lam LAM] [--forward]
[--max_workers MAX_WORKERS] [--t_max T_MAX]
{train,evaluate}
positional arguments:
{train,evaluate} what to do
optional arguments:
-h, --help show this help message and exit
--controller {MC,Sarsa,Sarsa_lambda,Q_learning,REINFORCE,ActorCritic,A3C,PPO}
choose an algorithm (controller)
--render set to render the env when evaluate
--save_replay set to save replay
--save_plot set to save Q-value plot when evaluate
--show_plot set to show Q-value plot when evaluate
--num_episodes NUM_EPISODES
set to run how many episodes
--batch_size BATCH_SIZE
set the batch size
--eva_interval EVA_INTERVAL
set how many episodes evaluate once
--evaluate_episodes EVALUATE_EPISODES
set evaluate how many episodes
--lr LR set learning rate
--epsilon EPSILON set epsilon when use epsilon-greedy
--gamma GAMMA set reward decay rate
--lam LAM set lambda if use sarsa(lambda) algorithm
--forward set to use forward-view sarsa(lambda)
--rawpixels set to use raw pixels as input (only valid to PPO)
--max_workers MAX_WORKERS
set max workers to train
--t_max T_MAX set simulate how many timesteps until update param
-
Policy evaluation
-
Policy improvement: 𝜀-greedy with 𝜀 decay
-
Q-value function approximation: A fully connected layer (input layer and output layer with no hidden layer)
- Policy evaluation
- Policy improvement: 𝜀-greedy with 𝜀 decay
- Q-value function approximation: A fully connected layer (input layer and output layer with no hidden layer)
Forward-view
- Policy evaluation
- Policy improvement: 𝜀-greedy with 𝜀 decay
- Q-value function approximation: A fully connected layer (input layer and output layer with no hidden layer)
Backward-view
- Policy evaluation
- Policy improvement: 𝜀-greedy with 𝜀 decay
- Q-value function approximation: A fully connected layer (input layer and output layer with no hidden layer)
- Policy evaluation
- Policy improvement: 𝜀-greedy with 𝜀 decay
- Q-value function approximation: A fully connected layer (input layer and output layer with no hidden layer)
Monte-Carlo policy gradient
Note: You shold pick a very small lr
to train a decent model, e.g. lr = 0.00001
-
Actor
-
Critic
Note: Running with OpenAI Spinning Up, TRPO is not implemented in this repo.
Run with:
python run.py --controller PPO --max_worker 6 --gamma 0.99 --evaluate_episodes 50 --batch_size 20 --epsilon 0.2 --lam 0.97 --eva_interval 100 train