diff --git a/input_images/skeleton_neom.png b/input_images/skeleton_neom.png new file mode 100644 index 0000000..3d9efa9 Binary files /dev/null and b/input_images/skeleton_neom.png differ diff --git a/input_images/skeleton_pringle.png b/input_images/skeleton_pringle.png new file mode 100644 index 0000000..5a65b97 Binary files /dev/null and b/input_images/skeleton_pringle.png differ diff --git a/map_server/map.png b/map_server/map.png new file mode 100644 index 0000000..fbd876d Binary files /dev/null and b/map_server/map.png differ diff --git a/map_server/map.yaml b/map_server/map.yaml new file mode 100644 index 0000000..2e52554 --- /dev/null +++ b/map_server/map.yaml @@ -0,0 +1,8 @@ +image: neom.png +resolution: 0.050000 +origin: [-10.000000, -10.000000, 0.000000] +negate: 0 +occupied_thresh: 0.65 +free_thresh: 0.196 +mode: scale + diff --git a/map_server/map_pringle.png b/map_server/map_pringle.png new file mode 100644 index 0000000..21607ef Binary files /dev/null and b/map_server/map_pringle.png differ diff --git a/map_server/map_pringle_dilate.png b/map_server/map_pringle_dilate.png new file mode 100644 index 0000000..b27ddd1 Binary files /dev/null and b/map_server/map_pringle_dilate.png differ diff --git a/map_server/neom.png b/map_server/neom.png new file mode 100644 index 0000000..ebea5de Binary files /dev/null and b/map_server/neom.png differ diff --git a/output_yaml/connected_graph__edited.yaml b/output_yaml/connected_graph__edited.yaml new file mode 100644 index 0000000..7302475 --- /dev/null +++ b/output_yaml/connected_graph__edited.yaml @@ -0,0 +1,3207 @@ +0: + node_pos: + - 394.8 + - 456.1 + outward_edges: + 13: 41.99974738359452 + 40: 33.31837655305863 + 66: 33.65979790687561 + 85: 42.60832602977753 + 228: 10.310660153627396 + 231: 10.28137083053589 + 237: 12.293502861261368 + 266: 10.443502861261369 +1: + node_pos: + - 262.8 + - 444.3 + outward_edges: + 28: 33.69619399905205 + 32: 42.049747383594514 + 77: 36.09619399905205 + 86: 42.86543279886246 + 248: 10.372792184352875 + 251: 10.393502861261368 + 258: 14.809188276529312 + 286: 10.452081507444383 +2: + node_pos: + - 368.90000000000003 + - 366.5 + outward_edges: + 14: 46.85330076813698 + 15: 33.692640614509585 + 52: 32.1512192606926 + 297: 10.331370830535889 + 300: 10.372792184352875 + 306: 10.922792184352875 + 330: 17.429898953437807 +3: + node_pos: + - 407.40000000000003 + - 628.1500000000001 + outward_edges: + 3: 6.501219260692597 + 123: 15.331980460882187 +4: + node_pos: + - 340.05 + - 622.0 + outward_edges: + 7: 55.46248904466629 + 42: 237.84589756131174 + 93: 24.224011445045473 + 100: 12.709188276529312 + 142: 13.4506096303463 +5: + node_pos: + - 241.5 + - 586.1 + outward_edges: + 5: 2.3727921843528748 + 42: 6.91923879981041 + 54: 8.156244522333145 +6: + node_pos: + - 218.0 + - 576.9 + outward_edges: + 6: 16.56482316851616 + 21: 17.271320307254793 + 65: 168.98473217487336 + 133: 11.74827550649643 +7: + node_pos: + - 345.3 + - 568.1 + outward_edges: + 4: 55.46248904466629 + 34: 13.924873691797258 + 74: 38.91352979838848 + 139: 10.289949476718903 + 150: 17.626524075865746 +8: + node_pos: + - 363.20000000000005 + - 530.65 + outward_edges: + 9: 16.95538227558136 + 24: 3.5399494767189026 +9: + node_pos: + - 350.55 + - 525.8000000000001 + outward_edges: + 8: 16.95538227558136 + 84: 7.502691137790681 + 97: 13.035533845424652 +10: + node_pos: + - 347.75 + - 500.90000000000003 + outward_edges: + 38: 8.716295045614244 + 76: 3.847056245803833 +11: + node_pos: + - 328.85 + - 450.6 + outward_edges: + 26: 42.48259009122849 + 28: 34.11187941431999 + 30: 42.06543279886246 + 40: 33.95477264523506 + 238: 10.352081507444382 + 241: 10.372792184352875 + 247: 12.659188276529314 + 276: 10.322792184352876 +12: + node_pos: + - 431.1 + - 417.6 + outward_edges: + 13: 33.37695519924164 + 66: 41.99619399905205 + 259: 10.331370830535889 + 262: 10.343502861261369 + 268: 12.172792184352875 + 325: 10.622792184352875 +13: + node_pos: + - 398.20000000000005 + - 415.0 + outward_edges: + 0: 41.99974738359452 + 12: 33.37695519924164 + 14: 33.842640614509584 + 15: 46.453300768136984 + 264: 10.28137083053589 + 267: 10.352081507444382 + 273: 12.576345568895341 + 296: 14.87634556889534 +14: + node_pos: + - 365.1 + - 412.35 + outward_edges: + 2: 46.85330076813698 + 13: 33.842640614509584 + 30: 32.90979790687561 + 40: 42.079036706686026 + 269: 10.310660153627396 + 272: 10.393502861261368 + 278: 11.643502861261368 + 299: 15.297056245803834 +15: + node_pos: + - 401.95000000000005 + - 369.5 + outward_edges: + 2: 33.692640614509585 + 13: 46.453300768136984 + 294: 10.352081507444382 + 301: 12.405634891986848 + 321: 16.159188276529314 + 328: 7.548528122901917 +16: + node_pos: + - 304.15000000000003 + - 360.5 + outward_edges: + 17: 29.859797906875613 + 31: 46.9518288910389 + 52: 34.17903670668602 + 88: 33.86690467596054 + 307: 10.393502861261368 + 310: 10.434924215078354 + 316: 12.538477599620819 + 334: 8.489949476718904 +17: + node_pos: + - 306.1 + - 331.3 + outward_edges: + 16: 29.859797906875613 + 17: 2.114213538169861 + 18: 33.816904675960544 + 333: 10.455634891986847 + 338: 12.37634556889534 +18: + node_pos: + - 273.15000000000003 + - 328.0 + outward_edges: + 17: 33.816904675960544 + 29: 39.92192993760109 + 78: 31.139087229967117 + 88: 29.735533845424655 + 335: 10.310660153627396 + 337: 10.434924215078354 + 340: 9.893502861261368 + 343: 8.439949476718903 +19: + node_pos: + - 278.75 + - 249.40000000000003 + outward_edges: + 20: 39.80269113779068 + 29: 39.86482316851616 + 89: 30.352691137790682 + 358: 10.26923879981041 + 361: 10.160660153627397 + 368: 9.098528122901916 + 375: 8.515685415267944 +20: + node_pos: + - 281.15000000000003 + - 210.05 + outward_edges: + 19: 39.80269113779068 + 41: 39.599137753248215 + 49: 32.98700572252274 + 79: 23.279898953437808 + 373: 10.177817445993425 + 376: 9.648528122901917 + 381: 12.510660153627397 + 410: 8.344974738359452 +21: + node_pos: + - 235.15 + - 578.5 + outward_edges: + 6: 17.271320307254793 + 37: 50.37878409028053 + 54: 2.332842707633972 + 158: 7.455634891986847 +22: + node_pos: + - 428.3 + - 545.8000000000001 + outward_edges: + 35: 7.464823168516159 + 58: 5.199137753248215 + 73: 4.9642135381698616 + 94: 33.6728965818882 +23: + node_pos: + - 441.0 + - 538.15 + outward_edges: + 50: 5.736396092176438 + 53: 2.7899494767189026 +24: + node_pos: + - 367.0 + - 531.5500000000001 + outward_edges: + 8: 3.5399494767189026 + 50: 79.77436845898629 + 80: 51.231118214130404 + 159: 10.393502861261368 +25: + node_pos: + - 243.55 + - 531.15 + outward_edges: + 37: 7.7142135381698616 + 96: 20.56984843015671 + 163: 10.497056245803833 + 211: 13.38847759962082 +26: + node_pos: + - 325.1 + - 492.05 + outward_edges: + 11: 42.48259009122849 + 38: 40.43883461356163 + 39: 34.166904675960545 + 201: 10.538477599620819 + 213: 12.714213538169862 + 240: 10.884924215078355 +27: + node_pos: + - 347.40000000000003 + - 212.5 + outward_edges: + 49: 33.81629504561425 + 90: 33.28345233798027 + 91: 38.26629504561424 + 369: 10.198528122901918 + 372: 12.810660153627396 + 396: 7.0949747383594515 +28: + node_pos: + - 295.75 + - 447.45000000000005 + outward_edges: + 1: 33.69619399905205 + 11: 34.11187941431999 + 31: 42.40685415267944 + 39: 42.64472212195397 + 243: 10.372792184352875 + 246: 10.497056245803833 + 252: 12.347056245803834 + 281: 10.643502861261368 +29: + node_pos: + - 276.2 + - 288.8 + outward_edges: + 18: 39.92192993760109 + 19: 39.86482316851616 + 99: 35.82903670668602 + 341: 10.289949476718903 + 344: 10.260660153627397 + 357: 14.426345568895341 + 360: 8.536396092176437 +30: + node_pos: + - 332.75 + - 409.55 + outward_edges: + 11: 42.06543279886246 + 14: 32.90979790687561 + 31: 33.71690467596054 + 52: 47.23467159867287 + 274: 10.393502861261368 + 277: 10.372792184352875 + 283: 12.367766922712327 + 304: 15.471320307254793 +31: + node_pos: + - 299.90000000000003 + - 406.20000000000005 + outward_edges: + 16: 46.9518288910389 + 28: 42.40685415267944 + 30: 33.71690467596054 + 32: 34.782590091228485 + 279: 10.434924215078354 + 282: 10.41421353816986 + 288: 13.371320307254791 + 309: 15.209188276529312 +32: + node_pos: + - 266.2 + - 403.15000000000003 + outward_edges: + 1: 42.049747383594514 + 31: 34.782590091228485 + 87: 36.33614347577095 + 88: 47.31396092176438 + 284: 10.352081507444382 + 287: 10.426345568895341 + 293: 14.72634556889534 + 314: 15.447056245803834 +33: + node_pos: + - 416.0 + - 593.35 + outward_edges: + 33: 2.5914213538169864 +34: + node_pos: + - 359.0 + - 570.1 + outward_edges: + 7: 13.924873691797258 + 34: 1.5328427076339723 + 137: 9.91421353816986 +35: + node_pos: + - 429.8 + - 540.35 + outward_edges: + 22: 7.464823168516159 + 68: 2.81923879981041 + 73: 2.2485281229019165 +36: + node_pos: + - 418.45000000000005 + - 539.7 + outward_edges: + 80: 13.21984843015671 +37: + node_pos: + - 235.8 + - 532.1 + outward_edges: + 21: 50.37878409028053 + 25: 7.7142135381698616 + 155: 11.15979790687561 + 204: 24.60391039848328 +38: + node_pos: + - 356.15000000000003 + - 498.95000000000005 + outward_edges: + 10: 8.716295045614244 + 26: 40.43883461356163 + 75: 183.0484843015671 + 201: 29.358935660123826 + 225: 48.380255967378616 +39: + node_pos: + - 291.85 + - 489.0 + outward_edges: + 26: 34.166904675960545 + 28: 42.64472212195397 + 86: 33.92903670668602 + 212: 10.48847759962082 + 215: 12.405634891986848 + 245: 10.943502861261369 +40: + node_pos: + - 362.0938415527344 + - 453.5181579589844 + outward_edges: + 0: 33.31837655305863 + 11: 33.95477264523506 + 14: 42.079036706686026 + 72: 43.12045806050301 + 233: 10.331370830535889 + 236: 10.352081507444382 + 242: 12.417766922712326 + 271: 10.49350286126137 +41: + node_pos: + - 283.0 + - 170.75 + outward_edges: + 20: 39.599137753248215 + 67: 33.099137753248215 + 69: 22.71984843015671 + 71: 10.532842707633973 + 408: 10.198528122901918 + 411: 10.227817445993423 + 416: 11.56923879981041 +42: + node_pos: + - 240.65 + - 593.3000000000001 + outward_edges: + 4: 237.84589756131174 + 5: 6.91923879981041 + 64: 21.9911687374115 + 105: 15.737005722522737 +43: + node_pos: + - 361.20000000000005 + - 533.0500000000001 + outward_edges: + 74: 10.70710676908493 + 83: 14.740559107065202 + 94: 52.82056245803833 + 151: 13.355129659175873 +44: + node_pos: + - 285.8 + - 507.80000000000007 + outward_edges: + 48: 14.466295045614244 + 59: 5.210660153627396 + 96: 73.36726168990135 + 183: 10.41421353816986 +45: + node_pos: + - 444.25 + - 576.9 + outward_edges: + 45: 2.4363960921764374 + 55: 7.11923879981041 + 62: 5.857106769084931 +46: + node_pos: + - 405.95000000000005 + - 573.4 + outward_edges: + 56: 17.981980460882188 + 57: 17.903731891512873 + 94: 27.294112491607667 + 147: 16.4006096303463 +47: + node_pos: + - 448.05 + - 549.45 + outward_edges: + 47: 0.8707106769084931 + 53: 17.38987536728382 +48: + node_pos: + - 276.85 + - 501.45000000000005 + outward_edges: + 44: 14.466295045614244 + 59: 10.288477599620819 + 196: 10.179898953437807 +49: + node_pos: + - 313.85 + - 211.0 + outward_edges: + 20: 32.98700572252274 + 27: 33.81629504561425 + 67: 38.366295045614244 + 371: 10.21923879981041 + 377: 12.610660153627396 + 406: 7.224264061450959 +50: + node_pos: + - 434.95000000000005 + - 537.45 + outward_edges: + 23: 5.736396092176438 + 24: 79.77436845898629 + 68: 3.853553384542465 +51: + node_pos: + - 341.20000000000005 + - 173.5 + outward_edges: + 67: 25.46776692271233 + 71: 68.2439642727375 + 407: 15.06923879981041 +52: + node_pos: + - 337.40000000000003 + - 363.65000000000003 + outward_edges: + 2: 32.1512192606926 + 16: 34.17903670668602 + 30: 47.23467159867287 + 302: 10.372792184352875 + 305: 10.293502861261368 + 311: 12.809188276529312 + 332: 17.13345233798027 +53: + node_pos: + - 442.35 + - 535.35 + outward_edges: + 23: 2.7899494767189026 + 47: 17.38987536728382 + 75: 18.699494767189027 +54: + node_pos: + - 237.9 + - 579.0500000000001 + outward_edges: + 5: 8.156244522333145 + 21: 2.332842707633972 + 54: 6.220458060503006 +55: + node_pos: + - 436.95000000000005 + - 577.3000000000001 + outward_edges: + 45: 7.11923879981041 + 55: 1.2414213538169863 + 56: 13.866295045614244 + 62: 11.322792184352876 +56: + node_pos: + - 423.45000000000005 + - 576.1 + outward_edges: + 46: 17.981980460882188 + 55: 13.866295045614244 + 56: 2.2414213538169863 +57: + node_pos: + - 391.3 + - 573.1 + outward_edges: + 46: 17.903731891512873 + 57: 1.3621320307254792 + 138: 7.834924215078354 +58: + node_pos: + - 432.75 + - 548.65 + outward_edges: + 22: 5.199137753248215 + 58: 2.353553384542465 + 62: 36.89472212195397 + 146: 22.16482316851616 +59: + node_pos: + - 287.05 + - 502.45000000000005 + outward_edges: + 44: 5.210660153627396 + 48: 10.288477599620819 + 63: 55.75954529047013 + 190: 9.981370830535889 +60: + node_pos: + - 246.8 + - 498.55 + outward_edges: + 65: 17.182337474822997 + 96: 64.93944424390793 + 195: 9.943502861261369 + 209: 18.561269783973696 +61: + node_pos: + - 343.75 + - 173.10000000000002 + outward_edges: + 61: 2.2035533845424653 + 91: 5.493502861261368 + 420: 14.061879414319993 +62: + node_pos: + - 444.15000000000003 + - 570.75 + outward_edges: + 45: 5.857106769084931 + 55: 11.322792184352876 + 58: 36.89472212195397 + 136: 10.802081507444383 + 146: 14.18847759962082 +63: + node_pos: + - 334.90000000000003 + - 527.1 + outward_edges: + 59: 55.75954529047013 + 63: 4.860660153627396 + 92: 41.61248904466629 + 97: 6.239949476718903 +64: + node_pos: + - 253.3 + - 602.25 + outward_edges: + 42: 21.9911687374115 + 93: 131.55519023537636 + 104: 9.434924215078354 + 125: 12.887362736463547 + 130: 7.728427076339722 +65: + node_pos: + - 232.55 + - 490.6 + outward_edges: + 6: 168.98473217487336 + 60: 17.182337474822997 + 86: 28.749494767189027 + 216: 11.37462107539177 + 256: 12.161626797914506 +66: + node_pos: + - 427.90000000000003 + - 458.8 + outward_edges: + 0: 33.65979790687561 + 12: 41.99619399905205 + 217: 10.393502861261368 + 226: 10.393502861261368 + 232: 12.455634891986847 + 261: 10.481370830535889 +67: + node_pos: + - 315.75 + - 172.85000000000002 + outward_edges: + 41: 33.099137753248215 + 49: 38.366295045614244 + 51: 25.46776692271233 + 404: 10.20710676908493 + 407: 9.827817445993425 + 412: 12.122792184352875 +68: + node_pos: + - 430.70000000000005 + - 537.3000000000001 + outward_edges: + 35: 2.81923879981041 + 50: 3.853553384542465 + 82: 2.912132030725479 +69: + node_pos: + - 260.65000000000003 + - 169.20000000000002 + outward_edges: + 41: 22.71984843015671 + 71: 36.367261689901355 + 79: 40.36335129141808 + 413: 10.364213538169862 + 416: 10.579898953437805 + 421: 16.232590091228484 +70: + node_pos: + - 415.25 + - 187.35000000000002 + outward_edges: + 91: 105.20315254926682 + 98: 36.11873356699944 + 382: 10.227817445993423 + 392: 9.957716399431229 + 403: 12.518376553058625 +71: + node_pos: + - 283.45 + - 159.8 + outward_edges: + 41: 10.532842707633973 + 51: 68.2439642727375 + 69: 36.367261689901355 + 417: 10.028427076339723 + 422: 7.937005722522736 +72: + node_pos: + - 358.45000000000005 + - 495.6 + outward_edges: + 40: 43.12045806050301 + 85: 33.80477264523506 + 199: 10.455634891986847 + 235: 11.514213538169862 +73: + node_pos: + - 427.3 + - 540.75 + outward_edges: + 22: 4.9642135381698616 + 35: 2.2485281229019165 + 82: 2.8621320307254794 +74: + node_pos: + - 350.15000000000003 + - 533.2 + outward_edges: + 7: 38.91352979838848 + 43: 10.70710676908493 + 83: 2.5071067690849307 + 149: 10.352081507444382 +75: + node_pos: + - 434.6 + - 519.35 + outward_edges: + 38: 183.0484843015671 + 53: 18.699494767189027 + 84: 96.33832938075066 + 181: 11.22634556889534 +76: + node_pos: + - 345.05 + - 498.20000000000005 + outward_edges: + 10: 3.847056245803833 + 84: 13.481549337506294 + 194: 15.854772645235062 +77: + node_pos: + - 227.5 + - 441.15000000000003 + outward_edges: + 1: 36.09619399905205 + 87: 41.729036706686024 + 253: 10.434924215078354 + 257: 10.331370830535889 + 291: 10.089949476718903 +78: + node_pos: + - 242.60000000000002 + - 325.3 + outward_edges: + 18: 31.139087229967117 + 78: 2.332842707633972 + 339: 10.331370830535889 +79: + node_pos: + - 257.90000000000003 + - 208.75 + outward_edges: + 20: 23.279898953437808 + 69: 40.36335129141808 + 89: 41.60721116662026 + 378: 10.68345233798027 + 381: 10.198528122901918 + 415: 8.848528122901916 +80: + node_pos: + - 416.95000000000005 + - 536.1 + outward_edges: + 24: 51.231118214130404 + 36: 13.21984843015671 + 95: 2.881370830535889 + 162: 9.239949476718904 +81: + node_pos: + - 342.35 + - 567.25 + outward_edges: + 92: 11.334924215078354 + 166: 11.043250244855882 +82: + node_pos: + - 427.35 + - 537.4 + outward_edges: + 68: 2.912132030725479 + 73: 2.8621320307254794 +83: + node_pos: + - 350.25 + - 530.6 + outward_edges: + 43: 14.740559107065202 + 74: 2.5071067690849307 +84: + node_pos: + - 347.90000000000003 + - 518.8000000000001 + outward_edges: + 9: 7.502691137790681 + 75: 96.33832938075066 + 76: 13.481549337506294 + 175: 10.524011445045472 + 194: 9.56482316851616 +85: + node_pos: + - 391.45000000000005 + - 497.90000000000003 + outward_edges: + 0: 42.60832602977753 + 72: 33.80477264523506 + 200: 12.455634891986847 + 222: 14.271320307254792 + 230: 11.093502861261369 +86: + node_pos: + - 258.95 + - 486.1 + outward_edges: + 1: 42.86543279886246 + 39: 33.92903670668602 + 65: 28.749494767189027 + 214: 10.538477599620819 + 216: 16.800609630346298 + 250: 11.22634556889534 +87: + node_pos: + - 230.9 + - 400.35 + outward_edges: + 32: 36.33614347577095 + 77: 41.729036706686024 + 99: 123.26848095059395 + 289: 10.393502861261368 + 292: 10.75771639943123 + 355: 13.522792184352875 +88: + node_pos: + - 271.1 + - 357.25 + outward_edges: + 16: 33.86690467596054 + 18: 29.735533845424655 + 32: 47.31396092176438 + 312: 10.621320307254791 + 315: 10.393502861261368 + 336: 8.552081507444383 +89: + node_pos: + - 248.75 + - 247.10000000000002 + outward_edges: + 19: 30.352691137790682 + 79: 41.60721116662026 + 99: 41.830865597724916 + 364: 11.242640614509583 + 367: 10.405634891986848 + 380: 8.08345233798027 +90: + node_pos: + - 380.5 + - 214.0 + outward_edges: + 27: 33.28345233798027 + 370: 12.277817445993424 + 386: 10.26923879981041 + 401: 15.789949476718903 +91: + node_pos: + - 349.35 + - 174.45000000000002 + outward_edges: + 27: 38.26629504561424 + 61: 5.493502861261368 + 70: 105.20315254926682 + 394: 10.20710676908493 + 397: 10.209188276529312 +92: + node_pos: + - 330.90000000000003 + - 567.0500000000001 + outward_edges: + 63: 41.61248904466629 + 81: 11.334924215078354 + 92: 5.205634891986847 +93: + node_pos: + - 316.95000000000005 + - 618.75 + outward_edges: + 4: 24.224011445045473 + 64: 131.55519023537636 + 100: 10.973401814699173 + 102: 7.402081507444382 + 132: 10.656244522333147 +94: + node_pos: + - 408.45000000000005 + - 546.5 + outward_edges: + 22: 33.6728965818882 + 43: 52.82056245803833 + 46: 27.294112491607667 + 147: 10.372792184352875 + 154: 7.764213538169861 +95: + node_pos: + - 416.0 + - 539.15 + outward_edges: + 80: 2.881370830535889 + 95: 2.2899494767189026 +96: + node_pos: + - 263.7 + - 533.15 + outward_edges: + 25: 20.56984843015671 + 44: 73.36726168990135 + 60: 64.93944424390793 + 163: 9.460660153627396 + 185: 16.854163014888766 + 198: 12.788477599620819 +97: + node_pos: + - 341.35 + - 527.7 + outward_edges: + 9: 13.035533845424652 + 63: 6.239949476718903 + 164: 10.828427076339722 +98: + node_pos: + - 448.25 + - 194.60000000000002 + outward_edges: + 70: 36.11873356699944 + 98: 1.3778174459934236 + 391: 7.494974738359452 + 393: 14.72903670668602 +99: + node_pos: + - 241.25 + - 286.2 + outward_edges: + 29: 35.82903670668602 + 87: 123.26848095059395 + 89: 41.830865597724916 + 347: 10.517766922712326 + 356: 10.479898953437806 + 366: 8.460660153627396 +100: + node_pos: + - 327.40000000000003 + - 621.5 + outward_edges: + 4: 12.709188276529312 + 93: 10.973401814699173 +101: + node_pos: + - 312.55 + - 602.4 + outward_edges: + 102: 11.496803629398347 +102: + node_pos: + - 318.15000000000003 + - 611.2 + outward_edges: + 93: 7.402081507444382 + 101: 11.496803629398347 +103: + node_pos: + - 446.05 + - 595.9 + outward_edges: + 103: 2.2828427076339723 +104: + node_pos: + - 243.8 + - 601.65 + outward_edges: + 64: 9.434924215078354 + 104: 12.014823168516159 +105: + node_pos: + - 234.05 + - 602.45 + outward_edges: + 42: 15.737005722522737 + 106: 9.852081507444382 +106: + node_pos: + - 233.10000000000002 + - 612.45 + outward_edges: + 105: 9.852081507444382 + 107: 10.369848430156708 +107: + node_pos: + - 237.45000000000002 + - 619.3000000000001 + outward_edges: + 106: 10.369848430156708 + 108: 9.731370830535889 +108: + node_pos: + - 247.45 + - 620.2 + outward_edges: + 107: 9.731370830535889 + 109: 9.852081507444382 +109: + node_pos: + - 257.45 + - 621.1500000000001 + outward_edges: + 108: 9.852081507444382 + 110: 9.852081507444382 +110: + node_pos: + - 267.45 + - 622.1 + outward_edges: + 109: 9.852081507444382 + 111: 9.852081507444382 +111: + node_pos: + - 277.45 + - 623.0500000000001 + outward_edges: + 110: 9.852081507444382 + 112: 9.852081507444382 +112: + node_pos: + - 287.45 + - 624.0 + outward_edges: + 111: 9.852081507444382 + 113: 9.997056245803833 +113: + node_pos: + - 292.25 + - 629.9000000000001 + outward_edges: + 112: 9.997056245803833 + 114: 9.91421353816986 +114: + node_pos: + - 302.25 + - 631.0 + outward_edges: + 113: 9.91421353816986 + 115: 9.893502861261368 +115: + node_pos: + - 312.25 + - 632.0500000000001 + outward_edges: + 114: 9.893502861261368 + 116: 9.893502861261368 +116: + node_pos: + - 322.25 + - 633.1 + outward_edges: + 115: 9.893502861261368 + 117: 9.872792184352875 +117: + node_pos: + - 332.25 + - 634.1 + outward_edges: + 116: 9.872792184352875 + 118: 9.955634891986847 +118: + node_pos: + - 340.90000000000003 + - 633.1500000000001 + outward_edges: + 117: 9.955634891986847 + 119: 22.2911687374115 +119: + node_pos: + - 351.6 + - 622.4000000000001 + outward_edges: + 118: 22.2911687374115 + 120: 9.831370830535889 +120: + node_pos: + - 361.6 + - 623.3000000000001 + outward_edges: + 119: 9.831370830535889 + 121: 24.59766587615013 +121: + node_pos: + - 368.1 + - 627.85 + outward_edges: + 120: 24.59766587615013 + 121: 0.9707106769084931 +122: + node_pos: + - 382.5 + - 624.8000000000001 + outward_edges: + 123: 9.810660153627396 +123: + node_pos: + - 392.5 + - 625.6500000000001 + outward_edges: + 3: 15.331980460882187 + 122: 9.810660153627396 +124: + node_pos: + - 273.0 + - 586.9 + outward_edges: + 125: 12.31309867501259 + 126: 9.689949476718903 +125: + node_pos: + - 263.0 + - 594.1 + outward_edges: + 64: 12.887362736463547 + 124: 12.31309867501259 +126: + node_pos: + - 283.0 + - 587.65 + outward_edges: + 124: 9.689949476718903 + 127: 10.411269783973694 +127: + node_pos: + - 285.90000000000003 + - 597.25 + outward_edges: + 126: 10.411269783973694 + 128: 10.24558436870575 +128: + node_pos: + - 287.85 + - 607.25 + outward_edges: + 127: 10.24558436870575 +129: + node_pos: + - 270.65000000000003 + - 606.95 + outward_edges: + 130: 10.328427076339722 + 131: 31.149494767189026 +130: + node_pos: + - 260.65000000000003 + - 604.7 + outward_edges: + 64: 7.728427076339722 + 129: 10.328427076339722 +131: + node_pos: + - 296.85 + - 613.45 + outward_edges: + 129: 31.149494767189026 + 132: 10.618376553058624 +132: + node_pos: + - 306.85 + - 616.45 + outward_edges: + 93: 10.656244522333147 + 131: 10.618376553058624 +133: + node_pos: + - 207.55 + - 580.4 + outward_edges: + 6: 11.74827550649643 + 134: 9.872792184352875 +134: + node_pos: + - 197.55 + - 579.4 + outward_edges: + 133: 9.872792184352875 + 135: 9.872792184352875 +135: + node_pos: + - 187.55 + - 578.4 + outward_edges: + 134: 9.872792184352875 + 135: 2.582842707633972 +136: + node_pos: + - 433.25 + - 569.6 + outward_edges: + 62: 10.802081507444383 +137: + node_pos: + - 368.95000000000005 + - 570.4 + outward_edges: + 34: 9.91421353816986 + 137: 17.826955199241638 +138: + node_pos: + - 383.45000000000005 + - 571.75 + outward_edges: + 57: 7.834924215078354 +139: + node_pos: + - 344.55 + - 578.65 + outward_edges: + 7: 10.289949476718903 + 140: 9.852081507444382 +140: + node_pos: + - 343.6 + - 588.65 + outward_edges: + 139: 9.852081507444382 + 141: 9.852081507444382 +141: + node_pos: + - 342.65000000000003 + - 598.65 + outward_edges: + 140: 9.852081507444382 + 142: 9.852081507444382 +142: + node_pos: + - 341.70000000000005 + - 608.6500000000001 + outward_edges: + 4: 13.4506096303463 + 141: 9.852081507444382 +143: + node_pos: + - 472.5 + - 567.75 + outward_edges: + 143: 0.6000000000000001 +144: + node_pos: + - 473.70000000000005 + - 553.2 + outward_edges: + 144: 0.6000000000000001 +145: + node_pos: + - 455.75 + - 550.4 + outward_edges: + 145: 1.3 +146: + node_pos: + - 445.75 + - 556.65 + outward_edges: + 58: 22.16482316851616 + 62: 14.18847759962082 +147: + node_pos: + - 407.45000000000005 + - 557.0 + outward_edges: + 46: 16.4006096303463 + 94: 10.372792184352875 +148: + node_pos: + - 473.85 + - 543.65 + outward_edges: + 148: 0.65 +149: + node_pos: + - 349.3 + - 543.7 + outward_edges: + 74: 10.352081507444382 + 150: 9.852081507444382 +150: + node_pos: + - 348.35 + - 553.7 + outward_edges: + 7: 17.626524075865746 + 149: 9.852081507444382 +151: + node_pos: + - 370.6 + - 542.4 + outward_edges: + 43: 13.355129659175873 + 152: 9.852081507444382 +152: + node_pos: + - 380.6 + - 543.35 + outward_edges: + 151: 9.852081507444382 + 153: 9.852081507444382 +153: + node_pos: + - 390.6 + - 544.3000000000001 + outward_edges: + 152: 9.852081507444382 + 154: 9.831370830535889 +154: + node_pos: + - 400.6 + - 545.2 + outward_edges: + 94: 7.764213538169861 + 153: 9.831370830535889 +155: + node_pos: + - 239.4 + - 541.0 + outward_edges: + 37: 11.15979790687561 + 156: 9.872792184352875 +156: + node_pos: + - 238.4 + - 551.0 + outward_edges: + 155: 9.872792184352875 + 157: 9.852081507444382 +157: + node_pos: + - 237.45000000000002 + - 561.0 + outward_edges: + 156: 9.852081507444382 + 158: 9.872792184352875 +158: + node_pos: + - 236.45000000000002 + - 571.0 + outward_edges: + 21: 7.455634891986847 + 157: 9.872792184352875 +159: + node_pos: + - 377.5 + - 532.65 + outward_edges: + 24: 10.393502861261368 + 160: 9.810660153627396 +160: + node_pos: + - 387.5 + - 533.5 + outward_edges: + 159: 9.810660153627396 + 161: 9.810660153627396 +161: + node_pos: + - 397.5 + - 534.35 + outward_edges: + 160: 9.810660153627396 + 162: 9.810660153627396 +162: + node_pos: + - 407.5 + - 535.2 + outward_edges: + 80: 9.239949476718904 + 161: 9.810660153627396 +163: + node_pos: + - 254.05 + - 532.65 + outward_edges: + 25: 10.497056245803833 + 96: 9.460660153627396 +164: + node_pos: + - 338.6 + - 537.6 + outward_edges: + 97: 10.828427076339722 + 165: 9.748528122901917 +165: + node_pos: + - 337.90000000000003 + - 547.6 + outward_edges: + 164: 9.748528122901917 + 166: 9.81923879981041 +166: + node_pos: + - 337.55 + - 557.6 + outward_edges: + 81: 11.043250244855882 + 165: 9.81923879981041 +167: + node_pos: + - 359.05 + - 516.1 + outward_edges: + 168: 10.40771639943123 + 174: 73.47731221318246 +168: + node_pos: + - 366.65000000000003 + - 519.45 + outward_edges: + 167: 10.40771639943123 + 169: 9.831370830535889 +169: + node_pos: + - 376.65000000000003 + - 520.35 + outward_edges: + 168: 9.831370830535889 + 170: 9.831370830535889 +170: + node_pos: + - 386.65000000000003 + - 521.25 + outward_edges: + 169: 9.831370830535889 + 171: 9.852081507444382 +171: + node_pos: + - 396.65000000000003 + - 522.2 + outward_edges: + 170: 9.852081507444382 + 172: 9.831370830535889 +172: + node_pos: + - 406.65000000000003 + - 523.1 + outward_edges: + 171: 9.831370830535889 + 173: 9.78137083053589 +173: + node_pos: + - 416.65000000000003 + - 524.0 + outward_edges: + 172: 9.78137083053589 + 174: 9.872792184352875 +174: + node_pos: + - 426.65000000000003 + - 524.7 + outward_edges: + 167: 73.47731221318246 + 173: 9.872792184352875 +175: + node_pos: + - 352.70000000000005 + - 509.9 + outward_edges: + 84: 10.524011445045472 + 176: 12.167766922712326 +176: + node_pos: + - 364.90000000000003 + - 511.20000000000005 + outward_edges: + 175: 12.167766922712326 + 177: 9.934924215078354 +177: + node_pos: + - 374.90000000000003 + - 512.35 + outward_edges: + 176: 9.934924215078354 + 178: 9.934924215078354 +178: + node_pos: + - 384.90000000000003 + - 513.5 + outward_edges: + 177: 9.934924215078354 + 179: 9.934924215078354 +179: + node_pos: + - 394.90000000000003 + - 514.65 + outward_edges: + 178: 9.934924215078354 + 180: 9.91421353816986 +180: + node_pos: + - 404.90000000000003 + - 515.8000000000001 + outward_edges: + 179: 9.91421353816986 + 182: 8.352081507444382 +181: + node_pos: + - 423.40000000000003 + - 517.9 + outward_edges: + 75: 11.22634556889534 + 182: 9.934924215078354 +182: + node_pos: + - 413.40000000000003 + - 516.75 + outward_edges: + 180: 8.352081507444382 + 181: 9.934924215078354 +183: + node_pos: + - 285.35 + - 518.3000000000001 + outward_edges: + 44: 10.41421353816986 + 184: 9.831370830535889 +184: + node_pos: + - 284.45 + - 528.3000000000001 + outward_edges: + 183: 9.831370830535889 +185: + node_pos: + - 280.35 + - 535.15 + outward_edges: + 96: 16.854163014888766 + 186: 14.21984843015671 +186: + node_pos: + - 288.05 + - 536.0 + outward_edges: + 185: 14.21984843015671 + 187: 9.810660153627396 +187: + node_pos: + - 298.05 + - 536.85 + outward_edges: + 186: 9.810660153627396 + 187: 9.359188276529313 +188: + node_pos: + - 338.8 + - 505.55000000000007 + outward_edges: + 189: 14.527564829587938 +189: + node_pos: + - 336.85 + - 515.5 + outward_edges: + 188: 14.527564829587938 +190: + node_pos: + - 297.20000000000005 + - 502.80000000000007 + outward_edges: + 59: 9.981370830535889 + 191: 9.852081507444382 +191: + node_pos: + - 307.20000000000005 + - 503.75 + outward_edges: + 190: 9.852081507444382 + 191: 16.65269113779068 +192: + node_pos: + - 319.6 + - 504.20000000000005 + outward_edges: + 193: 9.748528122901917 +193: + node_pos: + - 329.6 + - 504.9 + outward_edges: + 192: 9.748528122901917 + 193: 7.288477599620819 +194: + node_pos: + - 343.85 + - 511.6 + outward_edges: + 76: 15.854772645235062 + 84: 9.56482316851616 +195: + node_pos: + - 256.8 + - 498.85 + outward_edges: + 60: 9.943502861261369 + 196: 10.067766922712327 +196: + node_pos: + - 266.8 + - 500.40000000000003 + outward_edges: + 48: 10.179898953437807 + 195: 10.067766922712327 + 197: 9.843502861261369 +197: + node_pos: + - 265.85 + - 510.35 + outward_edges: + 196: 9.843502861261369 + 198: 9.872792184352875 +198: + node_pos: + - 264.85 + - 520.35 + outward_edges: + 96: 12.788477599620819 + 197: 9.872792184352875 +199: + node_pos: + - 368.95000000000005 + - 496.55 + outward_edges: + 72: 10.455634891986847 + 200: 9.810660153627396 +200: + node_pos: + - 378.95000000000005 + - 497.40000000000003 + outward_edges: + 85: 12.455634891986847 + 199: 9.810660153627396 +201: + node_pos: + - 335.6 + - 493.65000000000003 + outward_edges: + 26: 10.538477599620819 + 38: 29.358935660123826 +202: + node_pos: + - 227.0 + - 500.05 + outward_edges: + 203: 18.17523070573807 + 209: 22.432947105169298 +203: + node_pos: + - 222.4 + - 510.9 + outward_edges: + 202: 18.17523070573807 + 204: 9.852081507444382 +204: + node_pos: + - 221.4 + - 520.9 + outward_edges: + 37: 24.60391039848328 + 203: 9.852081507444382 +205: + node_pos: + - 221.20000000000002 + - 530.9 + outward_edges: + 206: 10.100609630346298 +206: + node_pos: + - 219.45000000000002 + - 540.9 + outward_edges: + 205: 10.100609630346298 + 207: 9.872792184352875 +207: + node_pos: + - 218.45000000000002 + - 550.9 + outward_edges: + 206: 9.872792184352875 + 208: 9.852081507444382 +208: + node_pos: + - 217.5 + - 560.9 + outward_edges: + 207: 9.852081507444382 +209: + node_pos: + - 236.0 + - 506.15 + outward_edges: + 60: 18.561269783973696 + 202: 22.432947105169298 +210: + node_pos: + - 245.70000000000002 + - 507.75 + outward_edges: + 211: 9.852081507444382 +211: + node_pos: + - 244.9 + - 517.75 + outward_edges: + 25: 13.38847759962082 + 210: 9.852081507444382 +212: + node_pos: + - 302.3 + - 490.6 + outward_edges: + 39: 10.48847759962082 + 213: 9.831370830535889 +213: + node_pos: + - 312.3 + - 491.5 + outward_edges: + 26: 12.714213538169862 + 212: 9.831370830535889 +214: + node_pos: + - 269.45 + - 487.70000000000005 + outward_edges: + 86: 10.538477599620819 + 215: 9.831370830535889 +215: + node_pos: + - 279.45 + - 488.6 + outward_edges: + 39: 12.405634891986848 + 214: 9.831370830535889 +216: + node_pos: + - 242.25 + - 485.15000000000003 + outward_edges: + 65: 11.37462107539177 + 86: 16.800609630346298 +217: + node_pos: + - 427.0 + - 469.35 + outward_edges: + 66: 10.393502861261368 + 218: 9.789949476718903 +218: + node_pos: + - 426.20000000000005 + - 479.35 + outward_edges: + 217: 9.789949476718903 + 219: 9.810660153627396 +219: + node_pos: + - 425.35 + - 489.35 + outward_edges: + 218: 9.810660153627396 + 220: 9.802081507444383 +220: + node_pos: + - 424.55 + - 499.35 + outward_edges: + 219: 9.802081507444383 +221: + node_pos: + - 415.6 + - 500.5 + outward_edges: + 222: 9.760660153627397 + 223: 25.21040753722191 +222: + node_pos: + - 405.6 + - 499.70000000000005 + outward_edges: + 85: 14.271320307254792 + 221: 9.760660153627397 +223: + node_pos: + - 436.85 + - 504.75 + outward_edges: + 221: 25.21040753722191 + 224: 10.017766922712326 +224: + node_pos: + - 429.40000000000003 + - 507.35 + outward_edges: + 223: 10.017766922712326 + 225: 30.58908722996712 +225: + node_pos: + - 399.40000000000003 + - 504.5 + outward_edges: + 38: 48.380255967378616 + 224: 30.58908722996712 +226: + node_pos: + - 438.45000000000005 + - 459.65000000000003 + outward_edges: + 66: 10.393502861261368 + 227: 9.860660153627396 +227: + node_pos: + - 448.45000000000005 + - 460.20000000000005 + outward_edges: + 226: 9.860660153627396 + 227: 0.6414213538169862 +228: + node_pos: + - 394.0 + - 466.65000000000003 + outward_edges: + 0: 10.310660153627396 + 229: 9.789949476718903 +229: + node_pos: + - 393.20000000000005 + - 476.65000000000003 + outward_edges: + 228: 9.789949476718903 + 230: 9.739949476718904 +230: + node_pos: + - 392.40000000000003 + - 486.65000000000003 + outward_edges: + 85: 11.093502861261369 + 229: 9.739949476718904 +231: + node_pos: + - 405.35 + - 456.95000000000005 + outward_edges: + 0: 10.28137083053589 + 232: 9.789949476718903 +232: + node_pos: + - 415.35 + - 457.75 + outward_edges: + 66: 12.455634891986847 + 231: 9.789949476718903 +233: + node_pos: + - 360.90000000000003 + - 464.0 + outward_edges: + 40: 10.331370830535889 + 234: 9.760660153627397 +234: + node_pos: + - 360.1 + - 474.0 + outward_edges: + 233: 9.760660153627397 + 235: 9.810660153627396 +235: + node_pos: + - 359.25 + - 484.0 + outward_edges: + 72: 11.514213538169862 + 234: 9.810660153627396 +236: + node_pos: + - 372.35 + - 454.3 + outward_edges: + 40: 10.352081507444382 + 237: 9.789949476718903 +237: + node_pos: + - 382.35 + - 455.1 + outward_edges: + 0: 12.293502861261368 + 236: 9.789949476718903 +238: + node_pos: + - 327.90000000000003 + - 461.1 + outward_edges: + 11: 10.352081507444382 + 239: 9.831370830535889 +239: + node_pos: + - 327.0 + - 471.1 + outward_edges: + 238: 9.831370830535889 + 240: 9.731370830535889 +240: + node_pos: + - 326.20000000000005 + - 481.1 + outward_edges: + 26: 10.884924215078355 + 239: 9.731370830535889 +241: + node_pos: + - 339.40000000000003 + - 451.55 + outward_edges: + 11: 10.372792184352875 + 242: 9.760660153627397 +242: + node_pos: + - 349.40000000000003 + - 452.40000000000003 + outward_edges: + 40: 12.417766922712326 + 241: 9.760660153627397 +243: + node_pos: + - 294.90000000000003 + - 457.95000000000005 + outward_edges: + 28: 10.372792184352875 + 244: 9.852081507444382 +244: + node_pos: + - 293.95 + - 467.95000000000005 + outward_edges: + 243: 9.852081507444382 + 245: 9.852081507444382 +245: + node_pos: + - 293.0 + - 477.95000000000005 + outward_edges: + 39: 10.943502861261369 + 244: 9.852081507444382 +246: + node_pos: + - 306.25 + - 448.45000000000005 + outward_edges: + 28: 10.497056245803833 + 247: 9.872792184352875 +247: + node_pos: + - 316.25 + - 449.45000000000005 + outward_edges: + 11: 12.659188276529314 + 246: 9.872792184352875 +248: + node_pos: + - 261.85 + - 454.85 + outward_edges: + 1: 10.372792184352875 + 249: 9.831370830535889 +249: + node_pos: + - 260.95 + - 464.85 + outward_edges: + 248: 9.831370830535889 + 250: 9.810660153627396 +250: + node_pos: + - 260.1 + - 474.85 + outward_edges: + 86: 11.22634556889534 + 249: 9.810660153627396 +251: + node_pos: + - 273.35 + - 445.25 + outward_edges: + 1: 10.393502861261368 + 252: 9.872792184352875 +252: + node_pos: + - 283.35 + - 446.25 + outward_edges: + 28: 12.347056245803834 + 251: 9.872792184352875 +253: + node_pos: + - 226.10000000000002 + - 451.6 + outward_edges: + 77: 10.434924215078354 + 254: 9.831370830535889 +254: + node_pos: + - 225.20000000000002 + - 461.6 + outward_edges: + 253: 9.831370830535889 + 255: 9.852081507444382 +255: + node_pos: + - 224.25 + - 471.6 + outward_edges: + 254: 9.852081507444382 + 256: 9.831370830535889 +256: + node_pos: + - 224.20000000000002 + - 481.6 + outward_edges: + 65: 12.161626797914506 + 255: 9.831370830535889 +257: + node_pos: + - 238.0 + - 441.90000000000003 + outward_edges: + 77: 10.331370830535889 + 258: 9.872792184352875 +258: + node_pos: + - 248.0 + - 442.90000000000003 + outward_edges: + 1: 14.809188276529312 + 257: 9.872792184352875 +259: + node_pos: + - 430.3 + - 428.1 + outward_edges: + 12: 10.331370830535889 + 260: 9.689949476718903 +260: + node_pos: + - 429.55 + - 438.1 + outward_edges: + 259: 9.689949476718903 + 261: 9.789949476718903 +261: + node_pos: + - 428.75 + - 448.1 + outward_edges: + 66: 10.481370830535889 + 260: 9.789949476718903 +262: + node_pos: + - 441.55 + - 418.5 + outward_edges: + 12: 10.343502861261369 + 263: 9.739949476718904 +263: + node_pos: + - 451.55 + - 419.25 + outward_edges: + 262: 9.739949476718904 + 263: 1.2571067690849305 +264: + node_pos: + - 397.35 + - 425.5 + outward_edges: + 13: 10.28137083053589 + 265: 9.810660153627396 +265: + node_pos: + - 396.5 + - 435.5 + outward_edges: + 264: 9.810660153627396 + 266: 9.789949476718903 +266: + node_pos: + - 395.70000000000005 + - 445.5 + outward_edges: + 0: 10.443502861261369 + 265: 9.789949476718903 +267: + node_pos: + - 408.75 + - 415.90000000000003 + outward_edges: + 13: 10.352081507444382 + 268: 9.710660153627396 +268: + node_pos: + - 418.75 + - 416.65000000000003 + outward_edges: + 12: 12.172792184352875 + 267: 9.710660153627396 +269: + node_pos: + - 364.3 + - 422.90000000000003 + outward_edges: + 14: 10.310660153627396 + 270: 9.789949476718903 +270: + node_pos: + - 363.5 + - 432.90000000000003 + outward_edges: + 269: 9.789949476718903 + 271: 9.810660153627396 +271: + node_pos: + - 362.65000000000003 + - 442.90000000000003 + outward_edges: + 40: 10.49350286126137 + 270: 9.810660153627396 +272: + node_pos: + - 375.6 + - 413.20000000000005 + outward_edges: + 14: 10.393502861261368 + 273: 9.760660153627397 +273: + node_pos: + - 385.6 + - 414.0 + outward_edges: + 13: 12.576345568895341 + 272: 9.760660153627397 +274: + node_pos: + - 331.75 + - 420.1 + outward_edges: + 30: 10.393502861261368 + 275: 9.852081507444382 +275: + node_pos: + - 330.8 + - 430.1 + outward_edges: + 274: 9.852081507444382 + 276: 9.872792184352875 +276: + node_pos: + - 329.8 + - 440.1 + outward_edges: + 11: 10.322792184352876 + 275: 9.872792184352875 +277: + node_pos: + - 343.3 + - 410.5 + outward_edges: + 30: 10.372792184352875 + 278: 9.810660153627396 +278: + node_pos: + - 353.3 + - 411.35 + outward_edges: + 14: 11.643502861261368 + 277: 9.810660153627396 +279: + node_pos: + - 298.75 + - 416.70000000000005 + outward_edges: + 31: 10.434924215078354 + 280: 9.852081507444382 +280: + node_pos: + - 297.8 + - 426.70000000000005 + outward_edges: + 279: 9.852081507444382 + 281: 9.852081507444382 +281: + node_pos: + - 296.85 + - 436.70000000000005 + outward_edges: + 28: 10.643502861261368 + 280: 9.852081507444382 +282: + node_pos: + - 310.40000000000003 + - 407.35 + outward_edges: + 31: 10.41421353816986 + 283: 9.852081507444382 +283: + node_pos: + - 320.40000000000003 + - 408.3 + outward_edges: + 30: 12.367766922712327 + 282: 9.852081507444382 +284: + node_pos: + - 265.40000000000003 + - 413.65000000000003 + outward_edges: + 32: 10.352081507444382 + 285: 9.810660153627396 +285: + node_pos: + - 264.55 + - 423.65000000000003 + outward_edges: + 284: 9.810660153627396 + 286: 9.810660153627396 +286: + node_pos: + - 263.7 + - 433.65000000000003 + outward_edges: + 1: 10.452081507444383 + 285: 9.810660153627396 +287: + node_pos: + - 276.65000000000003 + - 404.05 + outward_edges: + 32: 10.426345568895341 + 288: 9.852081507444382 +288: + node_pos: + - 286.65000000000003 + - 405.0 + outward_edges: + 31: 13.371320307254791 + 287: 9.852081507444382 +289: + node_pos: + - 229.65 + - 410.85 + outward_edges: + 87: 10.393502861261368 + 290: 9.78137083053589 +290: + node_pos: + - 228.8 + - 420.85 + outward_edges: + 289: 9.78137083053589 + 291: 9.810660153627396 +291: + node_pos: + - 227.95000000000002 + - 430.85 + outward_edges: + 77: 10.089949476718903 + 290: 9.810660153627396 +292: + node_pos: + - 241.45000000000002 + - 401.05 + outward_edges: + 87: 10.75771639943123 + 293: 9.789949476718903 +293: + node_pos: + - 251.45 + - 401.85 + outward_edges: + 32: 14.72634556889534 + 292: 9.789949476718903 +294: + node_pos: + - 401.05 + - 380.05 + outward_edges: + 15: 10.352081507444382 + 295: 9.789949476718903 +295: + node_pos: + - 400.25 + - 390.05 + outward_edges: + 294: 9.789949476718903 + 296: 9.810660153627396 +296: + node_pos: + - 399.40000000000003 + - 400.05 + outward_edges: + 13: 14.87634556889534 + 295: 9.810660153627396 +297: + node_pos: + - 368.05 + - 377.05 + outward_edges: + 2: 10.331370830535889 + 298: 9.810660153627396 +298: + node_pos: + - 367.20000000000005 + - 387.05 + outward_edges: + 297: 9.810660153627396 + 299: 9.739949476718904 +299: + node_pos: + - 366.40000000000003 + - 397.05 + outward_edges: + 14: 15.297056245803834 + 298: 9.739949476718904 +300: + node_pos: + - 379.45000000000005 + - 367.45000000000005 + outward_edges: + 2: 10.372792184352875 + 301: 9.831370830535889 +301: + node_pos: + - 389.45000000000005 + - 368.35 + outward_edges: + 15: 12.405634891986848 + 300: 9.831370830535889 +302: + node_pos: + - 336.35 + - 374.15000000000003 + outward_edges: + 52: 10.372792184352875 + 303: 9.872792184352875 +303: + node_pos: + - 335.3 + - 384.15000000000003 + outward_edges: + 302: 9.872792184352875 + 304: 9.872792184352875 +304: + node_pos: + - 334.3 + - 394.15000000000003 + outward_edges: + 30: 15.471320307254793 + 303: 9.872792184352875 +305: + node_pos: + - 347.8 + - 364.6 + outward_edges: + 52: 10.293502861261368 + 306: 9.852081507444382 +306: + node_pos: + - 357.8 + - 365.55 + outward_edges: + 2: 10.922792184352875 + 305: 9.852081507444382 +307: + node_pos: + - 303.15000000000003 + - 371.05 + outward_edges: + 16: 10.393502861261368 + 308: 9.872792184352875 +308: + node_pos: + - 302.15000000000003 + - 381.05 + outward_edges: + 307: 9.872792184352875 + 309: 9.852081507444382 +309: + node_pos: + - 301.20000000000005 + - 391.05 + outward_edges: + 31: 15.209188276529312 + 308: 9.852081507444382 +310: + node_pos: + - 314.65000000000003 + - 361.55 + outward_edges: + 16: 10.434924215078354 + 311: 9.852081507444382 +311: + node_pos: + - 324.65000000000003 + - 362.5 + outward_edges: + 52: 12.809188276529312 + 310: 9.852081507444382 +312: + node_pos: + - 269.25 + - 367.70000000000005 + outward_edges: + 88: 10.621320307254791 + 313: 9.760660153627397 +313: + node_pos: + - 268.40000000000003 + - 377.70000000000005 + outward_edges: + 312: 9.760660153627397 + 314: 9.810660153627396 +314: + node_pos: + - 267.55 + - 387.70000000000005 + outward_edges: + 32: 15.447056245803834 + 313: 9.810660153627396 +315: + node_pos: + - 281.6 + - 358.45000000000005 + outward_edges: + 88: 10.393502861261368 + 316: 9.852081507444382 +316: + node_pos: + - 291.6 + - 359.40000000000003 + outward_edges: + 16: 12.538477599620819 + 315: 9.852081507444382 +317: + node_pos: + - 434.3 + - 345.05 + outward_edges: + 318: 9.852081507444382 +318: + node_pos: + - 433.35 + - 355.05 + outward_edges: + 317: 9.852081507444382 + 319: 9.852081507444382 +319: + node_pos: + - 432.40000000000003 + - 365.05 + outward_edges: + 318: 9.852081507444382 + 322: 15.99827550649643 +320: + node_pos: + - 428.05 + - 371.70000000000005 + outward_edges: + 321: 9.810660153627396 +321: + node_pos: + - 418.05 + - 370.85 + outward_edges: + 15: 16.159188276529314 + 320: 9.810660153627396 +322: + node_pos: + - 434.40000000000003 + - 376.8 + outward_edges: + 319: 15.99827550649643 + 323: 9.739949476718904 +323: + node_pos: + - 433.65000000000003 + - 386.8 + outward_edges: + 322: 9.739949476718904 + 324: 9.739949476718904 +324: + node_pos: + - 432.85 + - 396.8 + outward_edges: + 323: 9.739949476718904 + 325: 9.760660153627397 +325: + node_pos: + - 432.05 + - 406.8 + outward_edges: + 12: 10.622792184352875 + 324: 9.760660153627397 +326: + node_pos: + - 405.15000000000003 + - 341.85 + outward_edges: + 327: 10.055634891986848 +327: + node_pos: + - 403.5 + - 351.70000000000005 + outward_edges: + 326: 10.055634891986848 + 328: 9.810660153627396 +328: + node_pos: + - 402.65000000000003 + - 361.70000000000005 + outward_edges: + 15: 7.548528122901917 + 327: 9.810660153627396 +329: + node_pos: + - 371.95000000000005 + - 339.15000000000003 + outward_edges: + 330: 10.034924215078355 +330: + node_pos: + - 370.35 + - 349.05 + outward_edges: + 2: 17.429898953437807 + 329: 10.034924215078355 +331: + node_pos: + - 340.5 + - 336.75 + outward_edges: + 332: 10.014213538169862 +332: + node_pos: + - 339.0 + - 346.70000000000005 + outward_edges: + 52: 17.13345233798027 + 331: 10.014213538169862 +333: + node_pos: + - 305.85 + - 341.8 + outward_edges: + 17: 10.455634891986847 + 334: 9.78137083053589 +334: + node_pos: + - 304.95000000000005 + - 351.8 + outward_edges: + 16: 8.489949476718904 + 333: 9.78137083053589 +335: + node_pos: + - 272.35 + - 338.55 + outward_edges: + 18: 10.310660153627396 + 336: 9.789949476718903 +336: + node_pos: + - 271.55 + - 348.55 + outward_edges: + 88: 8.552081507444383 + 335: 9.789949476718903 +337: + node_pos: + - 283.65000000000003 + - 328.90000000000003 + outward_edges: + 18: 10.434924215078354 + 338: 9.872792184352875 +338: + node_pos: + - 293.65000000000003 + - 329.90000000000003 + outward_edges: + 17: 12.37634556889534 + 337: 9.872792184352875 +339: + node_pos: + - 253.10000000000002 + - 326.05 + outward_edges: + 78: 10.331370830535889 + 340: 9.831370830535889 +340: + node_pos: + - 263.1 + - 326.95000000000005 + outward_edges: + 18: 9.893502861261368 + 339: 9.831370830535889 +341: + node_pos: + - 275.55 + - 299.3 + outward_edges: + 29: 10.289949476718903 + 342: 9.76923879981041 +342: + node_pos: + - 274.8 + - 309.3 + outward_edges: + 341: 9.76923879981041 + 343: 9.76923879981041 +343: + node_pos: + - 274.05 + - 319.3 + outward_edges: + 18: 8.439949476718903 + 342: 9.76923879981041 +344: + node_pos: + - 286.7 + - 289.3 + outward_edges: + 29: 10.260660153627397 + 345: 9.657106769084931 +345: + node_pos: + - 296.7 + - 289.85 + outward_edges: + 344: 9.657106769084931 + 346: 9.70710676908493 +346: + node_pos: + - 306.70000000000005 + - 290.45 + outward_edges: + 345: 9.70710676908493 + 346: 6.131370830535889 +347: + node_pos: + - 239.70000000000002 + - 296.65000000000003 + outward_edges: + 99: 10.517766922712326 + 348: 9.91421353816986 +348: + node_pos: + - 238.60000000000002 + - 306.65000000000003 + outward_edges: + 347: 9.91421353816986 + 349: 9.91421353816986 +349: + node_pos: + - 237.5 + - 316.65000000000003 + outward_edges: + 348: 9.91421353816986 + 350: 25.547665876150134 +350: + node_pos: + - 235.60000000000002 + - 336.65000000000003 + outward_edges: + 349: 25.547665876150134 + 351: 9.760660153627397 +351: + node_pos: + - 234.8 + - 346.65000000000003 + outward_edges: + 350: 9.760660153627397 + 352: 9.760660153627397 +352: + node_pos: + - 233.95000000000002 + - 356.65000000000003 + outward_edges: + 351: 9.760660153627397 + 353: 9.76923879981041 +353: + node_pos: + - 233.20000000000002 + - 366.65000000000003 + outward_edges: + 352: 9.76923879981041 + 354: 9.789949476718903 +354: + node_pos: + - 232.4 + - 376.65000000000003 + outward_edges: + 353: 9.789949476718903 + 355: 9.789949476718903 +355: + node_pos: + - 231.60000000000002 + - 386.65000000000003 + outward_edges: + 87: 13.522792184352875 + 354: 9.789949476718903 +356: + node_pos: + - 251.7 + - 286.90000000000003 + outward_edges: + 99: 10.479898953437806 + 357: 9.76923879981041 +357: + node_pos: + - 261.7 + - 287.65000000000003 + outward_edges: + 29: 14.426345568895341 + 356: 9.76923879981041 +358: + node_pos: + - 278.05 + - 259.95 + outward_edges: + 19: 10.26923879981041 + 359: 9.677817445993425 +359: + node_pos: + - 277.45 + - 269.95 + outward_edges: + 358: 9.677817445993425 + 360: 9.698528122901918 +360: + node_pos: + - 276.8 + - 279.95 + outward_edges: + 29: 8.536396092176437 + 359: 9.698528122901918 +361: + node_pos: + - 289.15000000000003 + - 249.90000000000003 + outward_edges: + 19: 10.160660153627397 + 362: 9.70710676908493 +362: + node_pos: + - 299.15000000000003 + - 250.5 + outward_edges: + 361: 9.70710676908493 + 363: 9.627817445993424 +363: + node_pos: + - 309.15000000000003 + - 251.05 + outward_edges: + 362: 9.627817445993424 + 363: 7.659188276529313 +364: + node_pos: + - 245.4 + - 257.55 + outward_edges: + 89: 11.242640614509583 + 365: 10.411269783973694 +365: + node_pos: + - 242.95000000000002 + - 267.55 + outward_edges: + 364: 10.411269783973694 + 366: 10.059188276529312 +366: + node_pos: + - 241.45000000000002 + - 277.55 + outward_edges: + 99: 8.460660153627396 + 365: 10.059188276529312 +367: + node_pos: + - 259.3 + - 248.2 + outward_edges: + 89: 10.405634891986848 + 368: 9.70710676908493 +368: + node_pos: + - 269.3 + - 248.8 + outward_edges: + 19: 9.098528122901916 + 367: 9.70710676908493 +369: + node_pos: + - 357.90000000000003 + - 213.4 + outward_edges: + 27: 10.198528122901918 + 370: 9.615685415267945 +370: + node_pos: + - 367.90000000000003 + - 213.85000000000002 + outward_edges: + 90: 12.277817445993424 + 369: 9.615685415267945 +371: + node_pos: + - 324.35 + - 211.9 + outward_edges: + 49: 10.21923879981041 + 372: 9.594974738359452 +372: + node_pos: + - 334.35 + - 212.35000000000002 + outward_edges: + 27: 12.810660153627396 + 371: 9.594974738359452 +373: + node_pos: + - 280.7 + - 220.55 + outward_edges: + 20: 10.177817445993425 + 374: 9.727817445993423 +374: + node_pos: + - 280.05 + - 230.55 + outward_edges: + 373: 9.727817445993423 + 375: 9.677817445993425 +375: + node_pos: + - 279.40000000000003 + - 240.55 + outward_edges: + 19: 8.515685415267944 + 374: 9.677817445993425 +376: + node_pos: + - 291.05 + - 210.35000000000002 + outward_edges: + 20: 9.648528122901917 + 377: 9.586396092176438 +377: + node_pos: + - 301.05 + - 210.8 + outward_edges: + 49: 12.610660153627396 + 376: 9.586396092176438 +378: + node_pos: + - 255.8 + - 219.20000000000002 + outward_edges: + 79: 10.68345233798027 + 379: 10.473401814699173 +379: + node_pos: + - 253.2 + - 229.20000000000002 + outward_edges: + 378: 10.473401814699173 + 380: 10.535533845424652 +380: + node_pos: + - 250.45 + - 239.20000000000002 + outward_edges: + 89: 8.08345233798027 + 379: 10.535533845424652 +381: + node_pos: + - 268.40000000000003 + - 209.25 + outward_edges: + 20: 12.510660153627397 + 79: 10.198528122901918 +382: + node_pos: + - 414.6 + - 197.9 + outward_edges: + 70: 10.227817445993423 + 383: 9.627817445993424 +383: + node_pos: + - 414.05 + - 207.9 + outward_edges: + 382: 9.627817445993424 + 387: 16.942030984163285 +384: + node_pos: + - 411.05 + - 215.70000000000002 + outward_edges: + 385: 9.594974738359452 +385: + node_pos: + - 401.05 + - 215.3 + outward_edges: + 384: 9.594974738359452 + 386: 9.644974738359451 +386: + node_pos: + - 391.05 + - 214.85000000000002 + outward_edges: + 90: 10.26923879981041 + 385: 9.644974738359451 +387: + node_pos: + - 420.95000000000005 + - 216.10000000000002 + outward_edges: + 383: 16.942030984163285 + 388: 9.594974738359452 +388: + node_pos: + - 430.95000000000005 + - 216.5 + outward_edges: + 387: 9.594974738359452 + 389: 9.615685415267945 +389: + node_pos: + - 440.95000000000005 + - 216.95000000000002 + outward_edges: + 388: 9.615685415267945 +390: + node_pos: + - 447.35 + - 212.5 + outward_edges: + 390: 9.897056245803833 + 391: 9.636396092176438 +391: + node_pos: + - 447.85 + - 202.5 + outward_edges: + 98: 7.494974738359452 + 390: 9.636396092176438 +392: + node_pos: + - 424.8 + - 188.35000000000002 + outward_edges: + 70: 9.957716399431229 + 393: 10.266295045614243 +393: + node_pos: + - 434.8 + - 190.4 + outward_edges: + 98: 14.72903670668602 + 392: 10.266295045614243 +394: + node_pos: + - 348.70000000000005 + - 184.95000000000002 + outward_edges: + 91: 10.20710676908493 + 395: 9.586396092176438 +395: + node_pos: + - 348.25 + - 194.95000000000002 + outward_edges: + 394: 9.586396092176438 + 396: 9.665685415267944 +396: + node_pos: + - 347.75 + - 204.95000000000002 + outward_edges: + 27: 7.0949747383594515 + 395: 9.665685415267944 +397: + node_pos: + - 359.5 + - 175.3 + outward_edges: + 91: 10.209188276529312 + 398: 10.121320307254791 +398: + node_pos: + - 369.5 + - 177.0 + outward_edges: + 397: 10.121320307254791 + 399: 10.266295045614243 +399: + node_pos: + - 379.5 + - 179.05 + outward_edges: + 398: 10.266295045614243 + 402: 22.31040753722191 +400: + node_pos: + - 381.70000000000005 + - 187.9 + outward_edges: + 401: 9.665685415267944 +401: + node_pos: + - 381.20000000000005 + - 197.9 + outward_edges: + 90: 15.789949476718903 + 400: 9.665685415267944 +402: + node_pos: + - 393.6 + - 181.95000000000002 + outward_edges: + 399: 22.31040753722191 + 403: 10.24558436870575 +403: + node_pos: + - 403.6 + - 184.0 + outward_edges: + 70: 12.518376553058625 + 402: 10.24558436870575 +404: + node_pos: + - 315.15000000000003 + - 183.35000000000002 + outward_edges: + 67: 10.20710676908493 + 405: 9.586396092176438 +405: + node_pos: + - 314.70000000000005 + - 193.35000000000002 + outward_edges: + 404: 9.586396092176438 + 406: 9.636396092176438 +406: + node_pos: + - 314.20000000000005 + - 203.35000000000002 + outward_edges: + 49: 7.224264061450959 + 405: 9.636396092176438 +407: + node_pos: + - 325.90000000000003 + - 172.85000000000002 + outward_edges: + 51: 15.06923879981041 + 67: 9.827817445993425 +408: + node_pos: + - 282.6 + - 181.25 + outward_edges: + 41: 10.198528122901918 + 409: 9.657106769084931 +409: + node_pos: + - 282.05 + - 191.25 + outward_edges: + 408: 9.657106769084931 + 410: 9.686396092176437 +410: + node_pos: + - 281.5 + - 201.25 + outward_edges: + 20: 8.344974738359452 + 409: 9.686396092176437 +411: + node_pos: + - 293.5 + - 171.15 + outward_edges: + 41: 10.227817445993423 + 412: 9.586396092176438 +412: + node_pos: + - 303.5 + - 171.65 + outward_edges: + 67: 12.122792184352875 + 411: 9.586396092176438 +413: + node_pos: + - 259.3 + - 179.65 + outward_edges: + 69: 10.364213538169862 + 414: 9.748528122901917 +414: + node_pos: + - 258.6 + - 189.65 + outward_edges: + 413: 9.748528122901917 + 415: 9.66923879981041 +415: + node_pos: + - 257.95 + - 199.65 + outward_edges: + 79: 8.848528122901916 + 414: 9.66923879981041 +416: + node_pos: + - 271.15000000000003 + - 170.0 + outward_edges: + 41: 11.56923879981041 + 69: 10.579898953437805 +417: + node_pos: + - 293.1 + - 160.85000000000002 + outward_edges: + 71: 10.028427076339723 + 418: 10.287005722522736 +418: + node_pos: + - 303.1 + - 163.0 + outward_edges: + 417: 10.287005722522736 + 419: 10.287005722522736 +419: + node_pos: + - 313.1 + - 165.10000000000002 + outward_edges: + 418: 10.287005722522736 + 420: 21.156854152679443 +420: + node_pos: + - 333.1 + - 169.3 + outward_edges: + 61: 14.061879414319993 + 419: 21.156854152679443 +421: + node_pos: + - 265.45 + - 155.05 + outward_edges: + 69: 16.232590091228484 + 422: 10.928427076339723 +422: + node_pos: + - 276.05 + - 157.20000000000002 + outward_edges: + 71: 7.937005722522736 + 421: 10.928427076339723 diff --git a/output_yaml/connected_graph_high_level.yaml b/output_yaml/connected_graph_high_level.yaml new file mode 100644 index 0000000..f08a9e5 --- /dev/null +++ b/output_yaml/connected_graph_high_level.yaml @@ -0,0 +1,3223 @@ +0: + node_pos: + - 394.8 + - 456.1 + outward_edges: + 13: 41.99974738359452 + 40: 33.51837655305862 + 66: 33.65979790687561 + 85: 42.60832602977753 + 228: 10.310660153627396 + 231: 10.28137083053589 + 237: 12.293502861261368 + 266: 10.443502861261369 +1: + node_pos: + - 262.8 + - 444.3 + outward_edges: + 28: 33.69619399905205 + 32: 42.049747383594514 + 77: 36.09619399905205 + 86: 42.86543279886246 + 248: 10.372792184352875 + 251: 10.393502861261368 + 258: 14.809188276529312 + 286: 10.452081507444383 +2: + node_pos: + - 368.90000000000003 + - 366.5 + outward_edges: + 14: 46.85330076813698 + 15: 33.692640614509585 + 52: 32.1512192606926 + 297: 10.331370830535889 + 300: 10.372792184352875 + 306: 10.922792184352875 + 330: 17.429898953437807 +3: + node_pos: + - 407.40000000000003 + - 628.1500000000001 + outward_edges: + 3: 6.501219260692597 + 123: 15.331980460882187 +4: + node_pos: + - 340.05 + - 622.0 + outward_edges: + 7: 55.46248904466629 + 42: 237.84589756131174 + 93: 24.224011445045473 + 100: 12.709188276529312 + 142: 13.4506096303463 +5: + node_pos: + - 241.5 + - 586.1 + outward_edges: + 5: 2.3727921843528748 + 42: 6.91923879981041 + 54: 8.156244522333145 +6: + node_pos: + - 218.0 + - 576.9 + outward_edges: + 6: 16.56482316851616 + 21: 17.271320307254793 + 65: 169.10544285178185 + 133: 11.74827550649643 +7: + node_pos: + - 345.3 + - 568.1 + outward_edges: + 4: 55.46248904466629 + 34: 13.924873691797258 + 74: 38.91352979838848 + 139: 10.289949476718903 + 150: 17.626524075865746 +8: + node_pos: + - 363.20000000000005 + - 530.65 + outward_edges: + 9: 16.95538227558136 + 24: 3.5399494767189026 +9: + node_pos: + - 350.55 + - 525.8000000000001 + outward_edges: + 8: 16.95538227558136 + 84: 7.502691137790681 + 97: 13.035533845424652 +10: + node_pos: + - 347.75 + - 500.90000000000003 + outward_edges: + 38: 8.716295045614244 + 76: 3.847056245803833 +11: + node_pos: + - 328.85 + - 450.6 + outward_edges: + 26: 42.48259009122849 + 28: 34.11187941431999 + 30: 42.06543279886246 + 40: 33.71335129141808 + 238: 10.352081507444382 + 241: 10.372792184352875 + 247: 12.659188276529314 + 276: 10.322792184352876 +12: + node_pos: + - 431.1 + - 417.6 + outward_edges: + 13: 33.37695519924164 + 66: 41.99619399905205 + 259: 10.331370830535889 + 262: 10.343502861261369 + 268: 12.172792184352875 + 325: 10.622792184352875 +13: + node_pos: + - 398.20000000000005 + - 415.0 + outward_edges: + 0: 41.99974738359452 + 12: 33.37695519924164 + 14: 33.842640614509584 + 15: 46.453300768136984 + 264: 10.28137083053589 + 267: 10.352081507444382 + 273: 12.576345568895341 + 296: 14.87634556889534 +14: + node_pos: + - 365.1 + - 412.35 + outward_edges: + 2: 46.85330076813698 + 13: 33.842640614509584 + 30: 32.90979790687561 + 40: 42.02903670668602 + 269: 10.310660153627396 + 272: 10.393502861261368 + 278: 11.643502861261368 + 299: 15.297056245803834 +15: + node_pos: + - 401.95000000000005 + - 369.5 + outward_edges: + 2: 33.692640614509585 + 13: 46.453300768136984 + 294: 10.352081507444382 + 301: 12.405634891986848 + 321: 16.159188276529314 + 328: 7.548528122901917 +16: + node_pos: + - 304.15000000000003 + - 360.5 + outward_edges: + 17: 29.859797906875613 + 31: 46.9518288910389 + 52: 34.17903670668602 + 88: 33.86690467596054 + 307: 10.393502861261368 + 310: 10.434924215078354 + 316: 12.538477599620819 + 334: 8.489949476718904 +17: + node_pos: + - 306.1 + - 331.3 + outward_edges: + 16: 29.859797906875613 + 17: 2.114213538169861 + 18: 33.816904675960544 + 333: 10.455634891986847 + 338: 12.37634556889534 +18: + node_pos: + - 273.15000000000003 + - 328.0 + outward_edges: + 17: 33.816904675960544 + 29: 39.92192993760109 + 78: 31.139087229967117 + 88: 29.735533845424655 + 335: 10.310660153627396 + 337: 10.434924215078354 + 340: 9.893502861261368 + 343: 8.439949476718903 +19: + node_pos: + - 278.75 + - 249.40000000000003 + outward_edges: + 20: 39.80269113779068 + 29: 39.86482316851616 + 89: 30.352691137790682 + 358: 10.26923879981041 + 361: 10.160660153627397 + 368: 9.098528122901916 + 375: 8.515685415267944 +20: + node_pos: + - 281.15000000000003 + - 210.05 + outward_edges: + 19: 39.80269113779068 + 41: 39.599137753248215 + 49: 32.98700572252274 + 79: 23.279898953437808 + 373: 10.177817445993425 + 376: 9.648528122901917 + 381: 12.510660153627397 + 410: 8.344974738359452 +21: + node_pos: + - 235.15 + - 578.5 + outward_edges: + 6: 17.271320307254793 + 37: 50.37878409028053 + 54: 2.332842707633972 + 158: 7.455634891986847 +22: + node_pos: + - 428.3 + - 545.8000000000001 + outward_edges: + 35: 7.464823168516159 + 58: 5.199137753248215 + 73: 4.9642135381698616 + 94: 33.6728965818882 +23: + node_pos: + - 441.0 + - 538.15 + outward_edges: + 50: 5.736396092176438 + 53: 2.7899494767189026 +24: + node_pos: + - 367.0 + - 531.5500000000001 + outward_edges: + 8: 3.5399494767189026 + 50: 79.77436845898629 + 80: 51.231118214130404 + 159: 10.393502861261368 +25: + node_pos: + - 243.55 + - 531.15 + outward_edges: + 37: 7.7142135381698616 + 96: 20.56984843015671 + 163: 10.497056245803833 + 211: 13.38847759962082 +26: + node_pos: + - 325.1 + - 492.05 + outward_edges: + 11: 42.48259009122849 + 38: 40.43883461356163 + 39: 34.166904675960545 + 201: 10.538477599620819 + 213: 12.714213538169862 + 240: 10.884924215078355 +27: + node_pos: + - 347.40000000000003 + - 212.5 + outward_edges: + 49: 33.81629504561425 + 90: 33.28345233798027 + 91: 38.26629504561424 + 369: 10.198528122901918 + 372: 12.810660153627396 + 396: 7.0949747383594515 +28: + node_pos: + - 295.75 + - 447.45000000000005 + outward_edges: + 1: 33.69619399905205 + 11: 34.11187941431999 + 31: 42.40685415267944 + 39: 42.64472212195397 + 243: 10.372792184352875 + 246: 10.497056245803833 + 252: 12.347056245803834 + 281: 10.643502861261368 +29: + node_pos: + - 276.2 + - 288.8 + outward_edges: + 18: 39.92192993760109 + 19: 39.86482316851616 + 99: 35.82903670668602 + 341: 10.289949476718903 + 344: 10.260660153627397 + 357: 14.426345568895341 + 360: 8.536396092176437 +30: + node_pos: + - 332.75 + - 409.55 + outward_edges: + 11: 42.06543279886246 + 14: 32.90979790687561 + 31: 33.71690467596054 + 52: 47.23467159867287 + 274: 10.393502861261368 + 277: 10.372792184352875 + 283: 12.367766922712327 + 304: 15.471320307254793 +31: + node_pos: + - 299.90000000000003 + - 406.20000000000005 + outward_edges: + 16: 46.9518288910389 + 28: 42.40685415267944 + 30: 33.71690467596054 + 32: 34.782590091228485 + 279: 10.434924215078354 + 282: 10.41421353816986 + 288: 13.371320307254791 + 309: 15.209188276529312 +32: + node_pos: + - 266.2 + - 403.15000000000003 + outward_edges: + 1: 42.049747383594514 + 31: 34.782590091228485 + 87: 36.33614347577095 + 88: 47.31396092176438 + 284: 10.352081507444382 + 287: 10.426345568895341 + 293: 14.72634556889534 + 314: 15.447056245803834 +33: + node_pos: + - 416.0 + - 593.35 + outward_edges: + 33: 2.5914213538169864 +34: + node_pos: + - 359.0 + - 570.1 + outward_edges: + 7: 13.924873691797258 + 34: 1.5328427076339723 + 137: 9.91421353816986 +35: + node_pos: + - 429.8 + - 540.35 + outward_edges: + 22: 7.464823168516159 + 68: 2.81923879981041 + 73: 2.2485281229019165 +36: + node_pos: + - 418.45000000000005 + - 539.7 + outward_edges: + 80: 13.21984843015671 +37: + node_pos: + - 235.8 + - 532.1 + outward_edges: + 21: 50.37878409028053 + 25: 7.7142135381698616 + 155: 11.15979790687561 + 204: 24.60391039848328 +38: + node_pos: + - 356.15000000000003 + - 498.95000000000005 + outward_edges: + 10: 8.716295045614244 + 26: 40.43883461356163 + 75: 183.0484843015671 + 201: 29.358935660123826 + 225: 48.380255967378616 +39: + node_pos: + - 291.85 + - 489.0 + outward_edges: + 26: 34.166904675960545 + 28: 42.64472212195397 + 86: 33.92903670668602 + 212: 10.48847759962082 + 215: 12.405634891986848 + 245: 10.943502861261369 +40: + node_pos: + - 361.85 + - 453.5 + outward_edges: + 0: 33.51837655305862 + 11: 33.71335129141808 + 14: 42.02903670668602 + 72: 43.07045806050301 + 233: 10.331370830535889 + 236: 10.352081507444382 + 242: 12.417766922712326 + 271: 10.49350286126137 +41: + node_pos: + - 283.0 + - 170.75 + outward_edges: + 20: 39.599137753248215 + 67: 33.099137753248215 + 69: 22.71984843015671 + 71: 10.532842707633973 + 408: 10.198528122901918 + 411: 10.227817445993423 + 416: 11.56923879981041 +42: + node_pos: + - 240.65 + - 593.3000000000001 + outward_edges: + 4: 237.84589756131174 + 5: 6.91923879981041 + 64: 21.9911687374115 + 105: 15.737005722522737 +43: + node_pos: + - 361.20000000000005 + - 533.0500000000001 + outward_edges: + 74: 10.70710676908493 + 83: 14.740559107065202 + 94: 52.82056245803833 + 151: 13.355129659175873 +44: + node_pos: + - 285.8 + - 507.80000000000007 + outward_edges: + 48: 14.466295045614244 + 59: 5.210660153627396 + 96: 73.36726168990135 + 183: 10.41421353816986 +45: + node_pos: + - 444.25 + - 576.9 + outward_edges: + 45: 2.4363960921764374 + 55: 7.11923879981041 + 62: 5.857106769084931 +46: + node_pos: + - 405.95000000000005 + - 573.4 + outward_edges: + 56: 17.981980460882188 + 57: 17.903731891512873 + 94: 27.294112491607667 + 147: 16.4006096303463 +47: + node_pos: + - 448.05 + - 549.45 + outward_edges: + 47: 0.8707106769084931 + 53: 17.38987536728382 +48: + node_pos: + - 276.85 + - 501.45000000000005 + outward_edges: + 44: 14.466295045614244 + 59: 10.288477599620819 + 196: 10.179898953437807 +49: + node_pos: + - 313.85 + - 211.0 + outward_edges: + 20: 32.98700572252274 + 27: 33.81629504561425 + 67: 38.366295045614244 + 371: 10.21923879981041 + 377: 12.610660153627396 + 406: 7.224264061450959 +50: + node_pos: + - 434.95000000000005 + - 537.45 + outward_edges: + 23: 5.736396092176438 + 24: 79.77436845898629 + 68: 3.853553384542465 +51: + node_pos: + - 341.20000000000005 + - 173.5 + outward_edges: + 67: 25.46776692271233 + 71: 68.2439642727375 + 407: 15.06923879981041 +52: + node_pos: + - 337.40000000000003 + - 363.65000000000003 + outward_edges: + 2: 32.1512192606926 + 16: 34.17903670668602 + 30: 47.23467159867287 + 302: 10.372792184352875 + 305: 10.293502861261368 + 311: 12.809188276529312 + 332: 17.13345233798027 +53: + node_pos: + - 442.35 + - 535.35 + outward_edges: + 23: 2.7899494767189026 + 47: 17.38987536728382 + 75: 18.699494767189027 +54: + node_pos: + - 237.9 + - 579.0500000000001 + outward_edges: + 5: 8.156244522333145 + 21: 2.332842707633972 + 54: 6.220458060503006 +55: + node_pos: + - 436.95000000000005 + - 577.3000000000001 + outward_edges: + 45: 7.11923879981041 + 55: 1.2414213538169863 + 56: 13.866295045614244 + 62: 11.322792184352876 +56: + node_pos: + - 423.45000000000005 + - 576.1 + outward_edges: + 46: 17.981980460882188 + 55: 13.866295045614244 + 56: 2.2414213538169863 +57: + node_pos: + - 391.3 + - 573.1 + outward_edges: + 46: 17.903731891512873 + 57: 1.3621320307254792 + 138: 7.834924215078354 +58: + node_pos: + - 432.75 + - 548.65 + outward_edges: + 22: 5.199137753248215 + 58: 2.353553384542465 + 62: 36.89472212195397 + 146: 22.16482316851616 +59: + node_pos: + - 287.05 + - 502.45000000000005 + outward_edges: + 44: 5.210660153627396 + 48: 10.288477599620819 + 63: 55.75954529047013 + 190: 9.981370830535889 +60: + node_pos: + - 246.8 + - 498.55 + outward_edges: + 65: 17.182337474822997 + 96: 64.93944424390793 + 195: 9.943502861261369 + 209: 18.561269783973696 +61: + node_pos: + - 343.75 + - 173.10000000000002 + outward_edges: + 61: 2.2035533845424653 + 91: 5.493502861261368 + 420: 14.061879414319993 +62: + node_pos: + - 444.15000000000003 + - 570.75 + outward_edges: + 45: 5.857106769084931 + 55: 11.322792184352876 + 58: 36.89472212195397 + 136: 10.802081507444383 + 146: 14.18847759962082 +63: + node_pos: + - 334.90000000000003 + - 527.1 + outward_edges: + 59: 55.75954529047013 + 63: 4.860660153627396 + 92: 41.61248904466629 + 97: 6.239949476718903 +64: + node_pos: + - 253.3 + - 602.25 + outward_edges: + 42: 21.9911687374115 + 93: 131.55519023537636 + 104: 9.434924215078354 + 125: 12.887362736463547 + 130: 7.728427076339722 +65: + node_pos: + - 232.50047302246094 + - 490.51361083984375 + outward_edges: + 6: 169.10544285178185 + 60: 17.182337474822997 + 86: 28.799494767189028 + 216: 11.37462107539177 + 256: 12.161626797914506 +66: + node_pos: + - 427.90000000000003 + - 458.8 + outward_edges: + 0: 33.65979790687561 + 12: 41.99619399905205 + 217: 10.393502861261368 + 226: 10.393502861261368 + 232: 12.455634891986847 + 261: 10.481370830535889 +67: + node_pos: + - 315.75 + - 172.85000000000002 + outward_edges: + 41: 33.099137753248215 + 49: 38.366295045614244 + 51: 25.46776692271233 + 404: 10.20710676908493 + 407: 9.827817445993425 + 412: 12.122792184352875 +68: + node_pos: + - 430.70000000000005 + - 537.3000000000001 + outward_edges: + 35: 2.81923879981041 + 50: 3.853553384542465 + 82: 2.912132030725479 +69: + node_pos: + - 260.65000000000003 + - 169.20000000000002 + outward_edges: + 41: 22.71984843015671 + 71: 36.367261689901355 + 79: 40.36335129141808 + 413: 10.364213538169862 + 416: 10.579898953437805 + 421: 16.232590091228484 +70: + node_pos: + - 415.25 + - 187.35000000000002 + outward_edges: + 91: 105.20315254926682 + 98: 36.11873356699944 + 382: 10.227817445993423 + 392: 9.957716399431229 + 403: 12.518376553058625 +71: + node_pos: + - 283.45 + - 159.8 + outward_edges: + 41: 10.532842707633973 + 51: 68.2439642727375 + 69: 36.367261689901355 + 417: 10.028427076339723 + 422: 7.937005722522736 +72: + node_pos: + - 358.45000000000005 + - 495.6 + outward_edges: + 40: 43.07045806050301 + 85: 33.80477264523506 + 199: 10.455634891986847 + 235: 11.514213538169862 +73: + node_pos: + - 427.3 + - 540.75 + outward_edges: + 22: 4.9642135381698616 + 35: 2.2485281229019165 + 82: 2.8621320307254794 +74: + node_pos: + - 350.15000000000003 + - 533.2 + outward_edges: + 7: 38.91352979838848 + 43: 10.70710676908493 + 83: 2.5071067690849307 + 149: 10.352081507444382 +75: + node_pos: + - 434.6 + - 519.35 + outward_edges: + 38: 183.0484843015671 + 53: 18.699494767189027 + 84: 96.33832938075066 + 181: 11.22634556889534 +76: + node_pos: + - 345.05 + - 498.20000000000005 + outward_edges: + 10: 3.847056245803833 + 84: 13.481549337506294 + 194: 15.854772645235062 +77: + node_pos: + - 227.5 + - 441.15000000000003 + outward_edges: + 1: 36.09619399905205 + 87: 41.729036706686024 + 253: 10.434924215078354 + 257: 10.331370830535889 + 291: 10.089949476718903 +78: + node_pos: + - 242.60000000000002 + - 325.3 + outward_edges: + 18: 31.139087229967117 + 78: 2.332842707633972 + 339: 10.331370830535889 +79: + node_pos: + - 257.90000000000003 + - 208.75 + outward_edges: + 20: 23.279898953437808 + 69: 40.36335129141808 + 89: 41.60721116662026 + 378: 10.68345233798027 + 381: 10.198528122901918 + 415: 8.848528122901916 +80: + node_pos: + - 416.95000000000005 + - 536.1 + outward_edges: + 24: 51.231118214130404 + 36: 13.21984843015671 + 95: 2.881370830535889 + 162: 9.239949476718904 +81: + node_pos: + - 342.35 + - 567.25 + outward_edges: + 92: 11.334924215078354 + 166: 11.043250244855882 +82: + node_pos: + - 427.35 + - 537.4 + outward_edges: + 68: 2.912132030725479 + 73: 2.8621320307254794 +83: + node_pos: + - 350.25 + - 530.6 + outward_edges: + 43: 14.740559107065202 + 74: 2.5071067690849307 +84: + node_pos: + - 347.90000000000003 + - 518.8000000000001 + outward_edges: + 9: 7.502691137790681 + 75: 96.33832938075066 + 76: 13.481549337506294 + 175: 10.524011445045472 + 194: 9.56482316851616 +85: + node_pos: + - 391.45000000000005 + - 497.90000000000003 + outward_edges: + 0: 42.60832602977753 + 72: 33.80477264523506 + 200: 12.455634891986847 + 222: 14.271320307254792 + 230: 11.093502861261369 +86: + node_pos: + - 258.95 + - 486.1 + outward_edges: + 1: 42.86543279886246 + 39: 33.92903670668602 + 65: 28.799494767189028 + 214: 10.538477599620819 + 216: 16.800609630346298 + 250: 11.22634556889534 +87: + node_pos: + - 230.9 + - 400.35 + outward_edges: + 32: 36.33614347577095 + 77: 41.729036706686024 + 99: 123.26848095059395 + 289: 10.393502861261368 + 292: 10.75771639943123 + 355: 13.522792184352875 +88: + node_pos: + - 271.1 + - 357.25 + outward_edges: + 16: 33.86690467596054 + 18: 29.735533845424655 + 32: 47.31396092176438 + 312: 10.621320307254791 + 315: 10.393502861261368 + 336: 8.552081507444383 +89: + node_pos: + - 248.75 + - 247.10000000000002 + outward_edges: + 19: 30.352691137790682 + 79: 41.60721116662026 + 99: 41.830865597724916 + 364: 11.242640614509583 + 367: 10.405634891986848 + 380: 8.08345233798027 +90: + node_pos: + - 380.5 + - 214.0 + outward_edges: + 27: 33.28345233798027 + 370: 12.277817445993424 + 386: 10.26923879981041 + 401: 15.789949476718903 +91: + node_pos: + - 349.35 + - 174.45000000000002 + outward_edges: + 27: 38.26629504561424 + 61: 5.493502861261368 + 70: 105.20315254926682 + 394: 10.20710676908493 + 397: 10.209188276529312 +92: + node_pos: + - 330.90000000000003 + - 567.0500000000001 + outward_edges: + 63: 41.61248904466629 + 81: 11.334924215078354 + 92: 5.205634891986847 +93: + node_pos: + - 316.95000000000005 + - 618.75 + outward_edges: + 4: 24.224011445045473 + 64: 131.55519023537636 + 100: 10.973401814699173 + 102: 7.402081507444382 + 132: 10.656244522333147 +94: + node_pos: + - 408.45000000000005 + - 546.5 + outward_edges: + 22: 33.6728965818882 + 43: 52.82056245803833 + 46: 27.294112491607667 + 147: 10.372792184352875 + 154: 7.764213538169861 +95: + node_pos: + - 416.0 + - 539.15 + outward_edges: + 80: 2.881370830535889 + 95: 2.2899494767189026 +96: + node_pos: + - 263.7 + - 533.15 + outward_edges: + 25: 20.56984843015671 + 44: 73.36726168990135 + 60: 64.93944424390793 + 163: 9.460660153627396 + 185: 16.854163014888766 + 198: 12.788477599620819 +97: + node_pos: + - 341.35 + - 527.7 + outward_edges: + 9: 13.035533845424652 + 63: 6.239949476718903 + 164: 10.828427076339722 +98: + node_pos: + - 448.25 + - 194.60000000000002 + outward_edges: + 70: 36.11873356699944 + 98: 1.3778174459934236 + 391: 7.494974738359452 + 393: 14.72903670668602 +99: + node_pos: + - 241.25 + - 286.2 + outward_edges: + 29: 35.82903670668602 + 87: 123.26848095059395 + 89: 41.830865597724916 + 347: 10.517766922712326 + 356: 10.479898953437806 + 366: 8.460660153627396 +100: + node_pos: + - 327.40000000000003 + - 621.5 + outward_edges: + 4: 12.709188276529312 + 93: 10.973401814699173 +101: + node_pos: + - 312.55 + - 602.4 + outward_edges: + 102: 11.496803629398347 +102: + node_pos: + - 318.15000000000003 + - 611.2 + outward_edges: + 93: 7.402081507444382 + 101: 11.496803629398347 +103: + node_pos: + - 446.05 + - 595.9 + outward_edges: + 103: 2.2828427076339723 +104: + node_pos: + - 243.8 + - 601.65 + outward_edges: + 64: 9.434924215078354 + 104: 12.014823168516159 +105: + node_pos: + - 234.05 + - 602.45 + outward_edges: + 42: 15.737005722522737 + 106: 9.852081507444382 +106: + node_pos: + - 233.10000000000002 + - 612.45 + outward_edges: + 105: 9.852081507444382 + 107: 10.369848430156708 +107: + node_pos: + - 237.45000000000002 + - 619.3000000000001 + outward_edges: + 106: 10.369848430156708 + 108: 9.731370830535889 +108: + node_pos: + - 247.45 + - 620.2 + outward_edges: + 107: 9.731370830535889 + 109: 9.852081507444382 +109: + node_pos: + - 257.45 + - 621.1500000000001 + outward_edges: + 108: 9.852081507444382 + 110: 9.852081507444382 +110: + node_pos: + - 267.45 + - 622.1 + outward_edges: + 109: 9.852081507444382 + 111: 9.852081507444382 +111: + node_pos: + - 277.45 + - 623.0500000000001 + outward_edges: + 110: 9.852081507444382 + 112: 9.852081507444382 +112: + node_pos: + - 287.45 + - 624.0 + outward_edges: + 111: 9.852081507444382 + 113: 9.997056245803833 +113: + node_pos: + - 292.25 + - 629.9000000000001 + outward_edges: + 112: 9.997056245803833 + 114: 9.91421353816986 +114: + node_pos: + - 302.25 + - 631.0 + outward_edges: + 113: 9.91421353816986 + 115: 9.893502861261368 +115: + node_pos: + - 312.25 + - 632.0500000000001 + outward_edges: + 114: 9.893502861261368 + 116: 9.893502861261368 +116: + node_pos: + - 322.25 + - 633.1 + outward_edges: + 115: 9.893502861261368 + 117: 9.872792184352875 +117: + node_pos: + - 332.25 + - 634.1 + outward_edges: + 116: 9.872792184352875 + 118: 9.955634891986847 +118: + node_pos: + - 340.90000000000003 + - 633.1500000000001 + outward_edges: + 117: 9.955634891986847 + 119: 22.2911687374115 +119: + node_pos: + - 351.6 + - 622.4000000000001 + outward_edges: + 118: 22.2911687374115 + 120: 9.831370830535889 +120: + node_pos: + - 361.6 + - 623.3000000000001 + outward_edges: + 119: 9.831370830535889 + 121: 24.59766587615013 +121: + node_pos: + - 368.1 + - 627.85 + outward_edges: + 120: 24.59766587615013 + 121: 0.9707106769084931 +122: + node_pos: + - 382.5 + - 624.8000000000001 + outward_edges: + 123: 9.810660153627396 +123: + node_pos: + - 392.5 + - 625.6500000000001 + outward_edges: + 3: 15.331980460882187 + 122: 9.810660153627396 +124: + node_pos: + - 273.0 + - 586.9 + outward_edges: + 125: 12.31309867501259 + 126: 9.689949476718903 +125: + node_pos: + - 263.0 + - 594.1 + outward_edges: + 64: 12.887362736463547 + 124: 12.31309867501259 +126: + node_pos: + - 283.0 + - 587.65 + outward_edges: + 124: 9.689949476718903 + 127: 10.411269783973694 +127: + node_pos: + - 285.90000000000003 + - 597.25 + outward_edges: + 126: 10.411269783973694 + 128: 10.24558436870575 +128: + node_pos: + - 287.85 + - 607.25 + outward_edges: + 127: 10.24558436870575 +129: + node_pos: + - 270.65000000000003 + - 606.95 + outward_edges: + 130: 10.328427076339722 + 131: 31.149494767189026 +130: + node_pos: + - 260.65000000000003 + - 604.7 + outward_edges: + 64: 7.728427076339722 + 129: 10.328427076339722 +131: + node_pos: + - 296.85 + - 613.45 + outward_edges: + 129: 31.149494767189026 + 132: 10.618376553058624 +132: + node_pos: + - 306.85 + - 616.45 + outward_edges: + 93: 10.656244522333147 + 131: 10.618376553058624 +133: + node_pos: + - 207.55 + - 580.4 + outward_edges: + 6: 11.74827550649643 + 134: 9.872792184352875 +134: + node_pos: + - 197.55 + - 579.4 + outward_edges: + 133: 9.872792184352875 + 135: 9.872792184352875 +135: + node_pos: + - 187.55 + - 578.4 + outward_edges: + 134: 9.872792184352875 + 135: 2.582842707633972 +136: + node_pos: + - 433.25 + - 569.6 + outward_edges: + 62: 10.802081507444383 +137: + node_pos: + - 368.95000000000005 + - 570.4 + outward_edges: + 34: 9.91421353816986 + 137: 17.826955199241638 +138: + node_pos: + - 383.45000000000005 + - 571.75 + outward_edges: + 57: 7.834924215078354 +139: + node_pos: + - 344.55 + - 578.65 + outward_edges: + 7: 10.289949476718903 + 140: 9.852081507444382 +140: + node_pos: + - 343.6 + - 588.65 + outward_edges: + 139: 9.852081507444382 + 141: 9.852081507444382 +141: + node_pos: + - 342.65000000000003 + - 598.65 + outward_edges: + 140: 9.852081507444382 + 142: 9.852081507444382 +142: + node_pos: + - 341.70000000000005 + - 608.6500000000001 + outward_edges: + 4: 13.4506096303463 + 141: 9.852081507444382 +143: + node_pos: + - 472.5 + - 567.75 + outward_edges: + 143: 0.6000000000000001 +144: + node_pos: + - 473.70000000000005 + - 553.2 + outward_edges: + 144: 0.6000000000000001 +145: + node_pos: + - 455.75 + - 550.4 + outward_edges: + 145: 1.3 +146: + node_pos: + - 445.75 + - 556.65 + outward_edges: + 58: 22.16482316851616 + 62: 14.18847759962082 +147: + node_pos: + - 407.45000000000005 + - 557.0 + outward_edges: + 46: 16.4006096303463 + 94: 10.372792184352875 +148: + node_pos: + - 473.85 + - 543.65 + outward_edges: + 148: 0.65 +149: + node_pos: + - 349.3 + - 543.7 + outward_edges: + 74: 10.352081507444382 + 150: 9.852081507444382 +150: + node_pos: + - 348.35 + - 553.7 + outward_edges: + 7: 17.626524075865746 + 149: 9.852081507444382 +151: + node_pos: + - 370.6 + - 542.4 + outward_edges: + 43: 13.355129659175873 + 152: 9.852081507444382 +152: + node_pos: + - 380.6 + - 543.35 + outward_edges: + 151: 9.852081507444382 + 153: 9.852081507444382 +153: + node_pos: + - 390.6 + - 544.3000000000001 + outward_edges: + 152: 9.852081507444382 + 154: 9.831370830535889 +154: + node_pos: + - 400.6 + - 545.2 + outward_edges: + 94: 7.764213538169861 + 153: 9.831370830535889 +155: + node_pos: + - 239.4 + - 541.0 + outward_edges: + 37: 11.15979790687561 + 156: 9.872792184352875 +156: + node_pos: + - 238.4 + - 551.0 + outward_edges: + 155: 9.872792184352875 + 157: 9.852081507444382 +157: + node_pos: + - 237.45000000000002 + - 561.0 + outward_edges: + 156: 9.852081507444382 + 158: 9.872792184352875 +158: + node_pos: + - 236.45000000000002 + - 571.0 + outward_edges: + 21: 7.455634891986847 + 157: 9.872792184352875 +159: + node_pos: + - 377.5 + - 532.65 + outward_edges: + 24: 10.393502861261368 + 160: 9.810660153627396 +160: + node_pos: + - 387.5 + - 533.5 + outward_edges: + 159: 9.810660153627396 + 161: 9.810660153627396 +161: + node_pos: + - 397.5 + - 534.35 + outward_edges: + 160: 9.810660153627396 + 162: 9.810660153627396 +162: + node_pos: + - 407.5 + - 535.2 + outward_edges: + 80: 9.239949476718904 + 161: 9.810660153627396 +163: + node_pos: + - 254.05 + - 532.65 + outward_edges: + 25: 10.497056245803833 + 96: 9.460660153627396 +164: + node_pos: + - 338.6 + - 537.6 + outward_edges: + 97: 10.828427076339722 + 165: 9.748528122901917 +165: + node_pos: + - 337.90000000000003 + - 547.6 + outward_edges: + 164: 9.748528122901917 + 166: 9.81923879981041 +166: + node_pos: + - 337.55 + - 557.6 + outward_edges: + 81: 11.043250244855882 + 165: 9.81923879981041 +167: + node_pos: + - 359.05 + - 516.1 + outward_edges: + 168: 10.40771639943123 + 174: 73.47731221318246 +168: + node_pos: + - 366.65000000000003 + - 519.45 + outward_edges: + 167: 10.40771639943123 + 169: 9.831370830535889 +169: + node_pos: + - 376.65000000000003 + - 520.35 + outward_edges: + 168: 9.831370830535889 + 170: 9.831370830535889 +170: + node_pos: + - 386.65000000000003 + - 521.25 + outward_edges: + 169: 9.831370830535889 + 171: 9.852081507444382 +171: + node_pos: + - 396.65000000000003 + - 522.2 + outward_edges: + 170: 9.852081507444382 + 172: 9.831370830535889 +172: + node_pos: + - 406.65000000000003 + - 523.1 + outward_edges: + 171: 9.831370830535889 + 173: 9.78137083053589 +173: + node_pos: + - 416.65000000000003 + - 524.0 + outward_edges: + 172: 9.78137083053589 + 174: 9.872792184352875 +174: + node_pos: + - 426.65000000000003 + - 524.7 + outward_edges: + 167: 73.47731221318246 + 173: 9.872792184352875 +175: + node_pos: + - 352.70000000000005 + - 509.9 + outward_edges: + 84: 10.524011445045472 + 176: 12.167766922712326 +176: + node_pos: + - 364.90000000000003 + - 511.20000000000005 + outward_edges: + 175: 12.167766922712326 + 177: 9.934924215078354 +177: + node_pos: + - 374.90000000000003 + - 512.35 + outward_edges: + 176: 9.934924215078354 + 178: 9.934924215078354 +178: + node_pos: + - 384.90000000000003 + - 513.5 + outward_edges: + 177: 9.934924215078354 + 179: 9.934924215078354 +179: + node_pos: + - 394.90000000000003 + - 514.65 + outward_edges: + 178: 9.934924215078354 + 180: 9.91421353816986 +180: + node_pos: + - 404.90000000000003 + - 515.8000000000001 + outward_edges: + 179: 9.91421353816986 + 182: 8.352081507444382 +181: + node_pos: + - 423.40000000000003 + - 517.9 + outward_edges: + 75: 11.22634556889534 + 182: 9.934924215078354 +182: + node_pos: + - 413.40000000000003 + - 516.75 + outward_edges: + 180: 8.352081507444382 + 181: 9.934924215078354 +183: + node_pos: + - 285.35 + - 518.3000000000001 + outward_edges: + 44: 10.41421353816986 + 184: 9.831370830535889 +184: + node_pos: + - 284.45 + - 528.3000000000001 + outward_edges: + 183: 9.831370830535889 +185: + node_pos: + - 280.35 + - 535.15 + outward_edges: + 96: 16.854163014888766 + 186: 14.21984843015671 +186: + node_pos: + - 288.05 + - 536.0 + outward_edges: + 185: 14.21984843015671 + 187: 9.810660153627396 +187: + node_pos: + - 298.05 + - 536.85 + outward_edges: + 186: 9.810660153627396 + 187: 9.359188276529313 +188: + node_pos: + - 338.8 + - 505.55000000000007 + outward_edges: + 189: 14.527564829587938 +189: + node_pos: + - 336.85 + - 515.5 + outward_edges: + 188: 14.527564829587938 +190: + node_pos: + - 297.20000000000005 + - 502.80000000000007 + outward_edges: + 59: 9.981370830535889 + 191: 9.852081507444382 +191: + node_pos: + - 307.20000000000005 + - 503.75 + outward_edges: + 190: 9.852081507444382 + 191: 16.65269113779068 +192: + node_pos: + - 319.6 + - 504.20000000000005 + outward_edges: + 193: 9.748528122901917 +193: + node_pos: + - 329.6 + - 504.9 + outward_edges: + 192: 9.748528122901917 + 193: 7.288477599620819 +194: + node_pos: + - 343.85 + - 511.6 + outward_edges: + 76: 15.854772645235062 + 84: 9.56482316851616 +195: + node_pos: + - 256.8 + - 498.85 + outward_edges: + 60: 9.943502861261369 + 196: 10.067766922712327 +196: + node_pos: + - 266.8 + - 500.40000000000003 + outward_edges: + 48: 10.179898953437807 + 195: 10.067766922712327 + 197: 9.843502861261369 +197: + node_pos: + - 265.85 + - 510.35 + outward_edges: + 196: 9.843502861261369 + 198: 9.872792184352875 +198: + node_pos: + - 264.85 + - 520.35 + outward_edges: + 96: 12.788477599620819 + 197: 9.872792184352875 +199: + node_pos: + - 368.95000000000005 + - 496.55 + outward_edges: + 72: 10.455634891986847 + 200: 9.810660153627396 +200: + node_pos: + - 378.95000000000005 + - 497.40000000000003 + outward_edges: + 85: 12.455634891986847 + 199: 9.810660153627396 +201: + node_pos: + - 335.6 + - 493.65000000000003 + outward_edges: + 26: 10.538477599620819 + 38: 29.358935660123826 +202: + node_pos: + - 227.0 + - 500.05 + outward_edges: + 203: 18.17523070573807 + 209: 22.432947105169298 +203: + node_pos: + - 222.4 + - 510.9 + outward_edges: + 202: 18.17523070573807 + 204: 9.852081507444382 +204: + node_pos: + - 221.4 + - 520.9 + outward_edges: + 37: 24.60391039848328 + 203: 9.852081507444382 +205: + node_pos: + - 221.20000000000002 + - 530.9 + outward_edges: + 206: 10.100609630346298 +206: + node_pos: + - 219.45000000000002 + - 540.9 + outward_edges: + 205: 10.100609630346298 + 207: 9.872792184352875 +207: + node_pos: + - 218.45000000000002 + - 550.9 + outward_edges: + 206: 9.872792184352875 + 208: 9.852081507444382 +208: + node_pos: + - 217.5 + - 560.9 + outward_edges: + 207: 9.852081507444382 +209: + node_pos: + - 236.0 + - 506.15 + outward_edges: + 60: 18.561269783973696 + 202: 22.432947105169298 +210: + node_pos: + - 245.70000000000002 + - 507.75 + outward_edges: + 211: 9.852081507444382 +211: + node_pos: + - 244.9 + - 517.75 + outward_edges: + 25: 13.38847759962082 + 210: 9.852081507444382 +212: + node_pos: + - 302.3 + - 490.6 + outward_edges: + 39: 10.48847759962082 + 213: 9.831370830535889 + 247: 42.87607148724392 +213: + node_pos: + - 312.3 + - 491.5 + outward_edges: + 26: 12.714213538169862 + 212: 9.831370830535889 +214: + node_pos: + - 269.45 + - 487.70000000000005 + outward_edges: + 86: 10.538477599620819 + 215: 9.831370830535889 +215: + node_pos: + - 279.45 + - 488.6 + outward_edges: + 39: 12.405634891986848 + 214: 9.831370830535889 +216: + node_pos: + - 242.25 + - 485.15000000000003 + outward_edges: + 65: 11.37462107539177 + 86: 16.800609630346298 +217: + node_pos: + - 427.0 + - 469.35 + outward_edges: + 66: 10.393502861261368 + 218: 9.789949476718903 +218: + node_pos: + - 426.20000000000005 + - 479.35 + outward_edges: + 217: 9.789949476718903 + 219: 9.810660153627396 +219: + node_pos: + - 425.35 + - 489.35 + outward_edges: + 218: 9.810660153627396 + 220: 9.802081507444383 +220: + node_pos: + - 424.55 + - 499.35 + outward_edges: + 219: 9.802081507444383 +221: + node_pos: + - 415.6 + - 500.5 + outward_edges: + 222: 9.760660153627397 + 223: 25.21040753722191 +222: + node_pos: + - 405.6 + - 499.70000000000005 + outward_edges: + 85: 14.271320307254792 + 221: 9.760660153627397 +223: + node_pos: + - 436.85 + - 504.75 + outward_edges: + 221: 25.21040753722191 + 224: 10.017766922712326 +224: + node_pos: + - 429.40000000000003 + - 507.35 + outward_edges: + 223: 10.017766922712326 + 225: 30.58908722996712 +225: + node_pos: + - 399.40000000000003 + - 504.5 + outward_edges: + 38: 48.380255967378616 + 224: 30.58908722996712 +226: + node_pos: + - 438.45000000000005 + - 459.65000000000003 + outward_edges: + 66: 10.393502861261368 + 227: 9.860660153627396 +227: + node_pos: + - 448.45000000000005 + - 460.20000000000005 + outward_edges: + 226: 9.860660153627396 + 227: 0.6414213538169862 +228: + node_pos: + - 394.0 + - 466.65000000000003 + outward_edges: + 0: 10.310660153627396 + 229: 9.789949476718903 +229: + node_pos: + - 393.20000000000005 + - 476.65000000000003 + outward_edges: + 228: 9.789949476718903 + 230: 9.739949476718904 +230: + node_pos: + - 392.40000000000003 + - 486.65000000000003 + outward_edges: + 85: 11.093502861261369 + 229: 9.739949476718904 +231: + node_pos: + - 405.35 + - 456.95000000000005 + outward_edges: + 0: 10.28137083053589 + 232: 9.789949476718903 +232: + node_pos: + - 415.35 + - 457.75 + outward_edges: + 66: 12.455634891986847 + 231: 9.789949476718903 +233: + node_pos: + - 360.90000000000003 + - 464.0 + outward_edges: + 40: 10.331370830535889 + 234: 9.760660153627397 +234: + node_pos: + - 360.1 + - 474.0 + outward_edges: + 233: 9.760660153627397 + 235: 9.810660153627396 +235: + node_pos: + - 359.25 + - 484.0 + outward_edges: + 72: 11.514213538169862 + 234: 9.810660153627396 +236: + node_pos: + - 372.35 + - 454.3 + outward_edges: + 40: 10.352081507444382 + 237: 9.789949476718903 +237: + node_pos: + - 382.35 + - 455.1 + outward_edges: + 0: 12.293502861261368 + 236: 9.789949476718903 +238: + node_pos: + - 327.90000000000003 + - 461.1 + outward_edges: + 11: 10.352081507444382 + 239: 9.831370830535889 +239: + node_pos: + - 327.0 + - 471.1 + outward_edges: + 238: 9.831370830535889 + 240: 9.731370830535889 + 423: 13.6274443044847 +240: + node_pos: + - 326.20000000000005 + - 481.1 + outward_edges: + 26: 10.884924215078355 + 239: 9.731370830535889 + 246: 38.30874999858687 +241: + node_pos: + - 339.40000000000003 + - 451.55 + outward_edges: + 11: 10.372792184352875 + 242: 9.760660153627397 +242: + node_pos: + - 349.40000000000003 + - 452.40000000000003 + outward_edges: + 40: 12.417766922712326 + 241: 9.760660153627397 +243: + node_pos: + - 294.90000000000003 + - 457.95000000000005 + outward_edges: + 28: 10.372792184352875 + 244: 9.852081507444382 +244: + node_pos: + - 293.95 + - 467.95000000000005 + outward_edges: + 243: 9.852081507444382 + 245: 9.852081507444382 +245: + node_pos: + - 293.0 + - 477.95000000000005 + outward_edges: + 39: 10.943502861261369 + 244: 9.852081507444382 +246: + node_pos: + - 306.25 + - 448.45000000000005 + outward_edges: + 28: 10.497056245803833 + 240: 38.30874999858687 +247: + node_pos: + - 316.25 + - 449.45000000000005 + outward_edges: + 11: 12.659188276529314 + 212: 42.87607148724392 +248: + node_pos: + - 261.85 + - 454.85 + outward_edges: + 1: 10.372792184352875 + 249: 9.831370830535889 +249: + node_pos: + - 260.95 + - 464.85 + outward_edges: + 248: 9.831370830535889 + 250: 9.810660153627396 +250: + node_pos: + - 260.1 + - 474.85 + outward_edges: + 86: 11.22634556889534 + 249: 9.810660153627396 +251: + node_pos: + - 273.35 + - 445.25 + outward_edges: + 1: 10.393502861261368 + 252: 9.872792184352875 +252: + node_pos: + - 283.35 + - 446.25 + outward_edges: + 28: 12.347056245803834 + 251: 9.872792184352875 +253: + node_pos: + - 226.10000000000002 + - 451.6 + outward_edges: + 77: 10.434924215078354 + 254: 9.831370830535889 +254: + node_pos: + - 225.20000000000002 + - 461.6 + outward_edges: + 253: 9.831370830535889 + 255: 9.852081507444382 +255: + node_pos: + - 224.25 + - 471.6 + outward_edges: + 254: 9.852081507444382 + 256: 9.831370830535889 +256: + node_pos: + - 224.20000000000002 + - 481.6 + outward_edges: + 65: 12.161626797914506 + 255: 9.831370830535889 +257: + node_pos: + - 238.0 + - 441.90000000000003 + outward_edges: + 77: 10.331370830535889 + 258: 9.872792184352875 +258: + node_pos: + - 248.0 + - 442.90000000000003 + outward_edges: + 1: 14.809188276529312 + 257: 9.872792184352875 +259: + node_pos: + - 430.3 + - 428.1 + outward_edges: + 12: 10.331370830535889 + 260: 9.689949476718903 +260: + node_pos: + - 429.55 + - 438.1 + outward_edges: + 259: 9.689949476718903 + 261: 9.789949476718903 +261: + node_pos: + - 428.75 + - 448.1 + outward_edges: + 66: 10.481370830535889 + 260: 9.789949476718903 +262: + node_pos: + - 441.55 + - 418.5 + outward_edges: + 12: 10.343502861261369 + 263: 9.739949476718904 +263: + node_pos: + - 451.55 + - 419.25 + outward_edges: + 262: 9.739949476718904 + 263: 1.2571067690849305 +264: + node_pos: + - 397.35 + - 425.5 + outward_edges: + 13: 10.28137083053589 + 265: 9.810660153627396 +265: + node_pos: + - 396.5 + - 435.5 + outward_edges: + 264: 9.810660153627396 + 266: 9.789949476718903 +266: + node_pos: + - 395.70000000000005 + - 445.5 + outward_edges: + 0: 10.443502861261369 + 265: 9.789949476718903 +267: + node_pos: + - 408.75 + - 415.90000000000003 + outward_edges: + 13: 10.352081507444382 + 268: 9.710660153627396 +268: + node_pos: + - 418.75 + - 416.65000000000003 + outward_edges: + 12: 12.172792184352875 + 267: 9.710660153627396 +269: + node_pos: + - 364.3 + - 422.90000000000003 + outward_edges: + 14: 10.310660153627396 + 270: 9.789949476718903 +270: + node_pos: + - 363.5 + - 432.90000000000003 + outward_edges: + 269: 9.789949476718903 + 271: 9.810660153627396 +271: + node_pos: + - 362.65000000000003 + - 442.90000000000003 + outward_edges: + 40: 10.49350286126137 + 270: 9.810660153627396 +272: + node_pos: + - 375.6 + - 413.20000000000005 + outward_edges: + 14: 10.393502861261368 + 273: 9.760660153627397 +273: + node_pos: + - 385.6 + - 414.0 + outward_edges: + 13: 12.576345568895341 + 272: 9.760660153627397 +274: + node_pos: + - 331.75 + - 420.1 + outward_edges: + 30: 10.393502861261368 + 275: 9.852081507444382 +275: + node_pos: + - 330.8 + - 430.1 + outward_edges: + 274: 9.852081507444382 + 276: 9.872792184352875 +276: + node_pos: + - 329.8 + - 440.1 + outward_edges: + 11: 10.322792184352876 + 275: 9.872792184352875 +277: + node_pos: + - 343.3 + - 410.5 + outward_edges: + 30: 10.372792184352875 + 278: 9.810660153627396 +278: + node_pos: + - 353.3 + - 411.35 + outward_edges: + 14: 11.643502861261368 + 277: 9.810660153627396 +279: + node_pos: + - 298.75 + - 416.70000000000005 + outward_edges: + 31: 10.434924215078354 + 280: 9.852081507444382 +280: + node_pos: + - 297.8 + - 426.70000000000005 + outward_edges: + 279: 9.852081507444382 + 281: 9.852081507444382 +281: + node_pos: + - 296.85 + - 436.70000000000005 + outward_edges: + 28: 10.643502861261368 + 280: 9.852081507444382 +282: + node_pos: + - 310.40000000000003 + - 407.35 + outward_edges: + 31: 10.41421353816986 + 283: 9.852081507444382 +283: + node_pos: + - 320.40000000000003 + - 408.3 + outward_edges: + 30: 12.367766922712327 + 282: 9.852081507444382 +284: + node_pos: + - 265.40000000000003 + - 413.65000000000003 + outward_edges: + 32: 10.352081507444382 + 285: 9.810660153627396 +285: + node_pos: + - 264.55 + - 423.65000000000003 + outward_edges: + 284: 9.810660153627396 + 286: 9.810660153627396 +286: + node_pos: + - 263.7 + - 433.65000000000003 + outward_edges: + 1: 10.452081507444383 + 285: 9.810660153627396 +287: + node_pos: + - 276.65000000000003 + - 404.05 + outward_edges: + 32: 10.426345568895341 + 288: 9.852081507444382 +288: + node_pos: + - 286.65000000000003 + - 405.0 + outward_edges: + 31: 13.371320307254791 + 287: 9.852081507444382 +289: + node_pos: + - 229.65 + - 410.85 + outward_edges: + 87: 10.393502861261368 + 290: 9.78137083053589 +290: + node_pos: + - 228.8 + - 420.85 + outward_edges: + 289: 9.78137083053589 + 291: 9.810660153627396 +291: + node_pos: + - 227.95000000000002 + - 430.85 + outward_edges: + 77: 10.089949476718903 + 290: 9.810660153627396 +292: + node_pos: + - 241.45000000000002 + - 401.05 + outward_edges: + 87: 10.75771639943123 + 293: 9.789949476718903 +293: + node_pos: + - 251.45 + - 401.85 + outward_edges: + 32: 14.72634556889534 + 292: 9.789949476718903 +294: + node_pos: + - 401.05 + - 380.05 + outward_edges: + 15: 10.352081507444382 + 295: 9.789949476718903 +295: + node_pos: + - 400.25 + - 390.05 + outward_edges: + 294: 9.789949476718903 + 296: 9.810660153627396 +296: + node_pos: + - 399.40000000000003 + - 400.05 + outward_edges: + 13: 14.87634556889534 + 295: 9.810660153627396 +297: + node_pos: + - 368.05 + - 377.05 + outward_edges: + 2: 10.331370830535889 + 298: 9.810660153627396 +298: + node_pos: + - 367.20000000000005 + - 387.05 + outward_edges: + 297: 9.810660153627396 + 299: 9.739949476718904 +299: + node_pos: + - 366.40000000000003 + - 397.05 + outward_edges: + 14: 15.297056245803834 + 298: 9.739949476718904 +300: + node_pos: + - 379.45000000000005 + - 367.45000000000005 + outward_edges: + 2: 10.372792184352875 + 301: 9.831370830535889 +301: + node_pos: + - 389.45000000000005 + - 368.35 + outward_edges: + 15: 12.405634891986848 + 300: 9.831370830535889 +302: + node_pos: + - 336.35 + - 374.15000000000003 + outward_edges: + 52: 10.372792184352875 + 303: 9.872792184352875 +303: + node_pos: + - 335.3 + - 384.15000000000003 + outward_edges: + 302: 9.872792184352875 + 304: 9.872792184352875 +304: + node_pos: + - 334.3 + - 394.15000000000003 + outward_edges: + 30: 15.471320307254793 + 303: 9.872792184352875 +305: + node_pos: + - 347.8 + - 364.6 + outward_edges: + 52: 10.293502861261368 + 306: 9.852081507444382 +306: + node_pos: + - 357.8 + - 365.55 + outward_edges: + 2: 10.922792184352875 + 305: 9.852081507444382 +307: + node_pos: + - 303.15000000000003 + - 371.05 + outward_edges: + 16: 10.393502861261368 + 308: 9.872792184352875 +308: + node_pos: + - 302.15000000000003 + - 381.05 + outward_edges: + 307: 9.872792184352875 + 309: 9.852081507444382 +309: + node_pos: + - 301.20000000000005 + - 391.05 + outward_edges: + 31: 15.209188276529312 + 308: 9.852081507444382 +310: + node_pos: + - 314.65000000000003 + - 361.55 + outward_edges: + 16: 10.434924215078354 + 311: 9.852081507444382 +311: + node_pos: + - 324.65000000000003 + - 362.5 + outward_edges: + 52: 12.809188276529312 + 310: 9.852081507444382 +312: + node_pos: + - 269.25 + - 367.70000000000005 + outward_edges: + 88: 10.621320307254791 + 313: 9.760660153627397 +313: + node_pos: + - 268.40000000000003 + - 377.70000000000005 + outward_edges: + 312: 9.760660153627397 + 314: 9.810660153627396 +314: + node_pos: + - 267.55 + - 387.70000000000005 + outward_edges: + 32: 15.447056245803834 + 313: 9.810660153627396 +315: + node_pos: + - 281.6 + - 358.45000000000005 + outward_edges: + 88: 10.393502861261368 + 316: 9.852081507444382 +316: + node_pos: + - 291.6 + - 359.40000000000003 + outward_edges: + 16: 12.538477599620819 + 315: 9.852081507444382 +317: + node_pos: + - 434.3 + - 345.05 + outward_edges: + 318: 9.852081507444382 +318: + node_pos: + - 433.35 + - 355.05 + outward_edges: + 317: 9.852081507444382 + 319: 9.852081507444382 +319: + node_pos: + - 432.40000000000003 + - 365.05 + outward_edges: + 318: 9.852081507444382 + 322: 15.99827550649643 +320: + node_pos: + - 428.05 + - 371.70000000000005 + outward_edges: + 321: 9.810660153627396 +321: + node_pos: + - 418.05 + - 370.85 + outward_edges: + 15: 16.159188276529314 + 320: 9.810660153627396 +322: + node_pos: + - 434.40000000000003 + - 376.8 + outward_edges: + 319: 15.99827550649643 + 323: 9.739949476718904 +323: + node_pos: + - 433.65000000000003 + - 386.8 + outward_edges: + 322: 9.739949476718904 + 324: 9.739949476718904 +324: + node_pos: + - 432.85 + - 396.8 + outward_edges: + 323: 9.739949476718904 + 325: 9.760660153627397 +325: + node_pos: + - 432.05 + - 406.8 + outward_edges: + 12: 10.622792184352875 + 324: 9.760660153627397 +326: + node_pos: + - 405.15000000000003 + - 341.85 + outward_edges: + 327: 10.055634891986848 +327: + node_pos: + - 403.5 + - 351.70000000000005 + outward_edges: + 326: 10.055634891986848 + 328: 9.810660153627396 +328: + node_pos: + - 402.65000000000003 + - 361.70000000000005 + outward_edges: + 15: 7.548528122901917 + 327: 9.810660153627396 +329: + node_pos: + - 371.95000000000005 + - 339.15000000000003 + outward_edges: + 330: 10.034924215078355 +330: + node_pos: + - 370.35 + - 349.05 + outward_edges: + 2: 17.429898953437807 + 329: 10.034924215078355 +331: + node_pos: + - 340.5 + - 336.75 + outward_edges: + 332: 10.014213538169862 +332: + node_pos: + - 339.0 + - 346.70000000000005 + outward_edges: + 52: 17.13345233798027 + 331: 10.014213538169862 +333: + node_pos: + - 305.85 + - 341.8 + outward_edges: + 17: 10.455634891986847 + 334: 9.78137083053589 +334: + node_pos: + - 304.95000000000005 + - 351.8 + outward_edges: + 16: 8.489949476718904 + 333: 9.78137083053589 +335: + node_pos: + - 272.35 + - 338.55 + outward_edges: + 18: 10.310660153627396 + 336: 9.789949476718903 +336: + node_pos: + - 271.55 + - 348.55 + outward_edges: + 88: 8.552081507444383 + 335: 9.789949476718903 +337: + node_pos: + - 283.65000000000003 + - 328.90000000000003 + outward_edges: + 18: 10.434924215078354 + 338: 9.872792184352875 +338: + node_pos: + - 293.65000000000003 + - 329.90000000000003 + outward_edges: + 17: 12.37634556889534 + 337: 9.872792184352875 +339: + node_pos: + - 253.10000000000002 + - 326.05 + outward_edges: + 78: 10.331370830535889 + 340: 9.831370830535889 +340: + node_pos: + - 263.1 + - 326.95000000000005 + outward_edges: + 18: 9.893502861261368 + 339: 9.831370830535889 +341: + node_pos: + - 275.55 + - 299.3 + outward_edges: + 29: 10.289949476718903 + 342: 9.76923879981041 +342: + node_pos: + - 274.8 + - 309.3 + outward_edges: + 341: 9.76923879981041 + 343: 9.76923879981041 +343: + node_pos: + - 274.05 + - 319.3 + outward_edges: + 18: 8.439949476718903 + 342: 9.76923879981041 +344: + node_pos: + - 286.7 + - 289.3 + outward_edges: + 29: 10.260660153627397 + 345: 9.657106769084931 +345: + node_pos: + - 296.7 + - 289.85 + outward_edges: + 344: 9.657106769084931 + 346: 9.70710676908493 +346: + node_pos: + - 306.70000000000005 + - 290.45 + outward_edges: + 345: 9.70710676908493 + 346: 6.131370830535889 +347: + node_pos: + - 239.70000000000002 + - 296.65000000000003 + outward_edges: + 99: 10.517766922712326 + 348: 9.91421353816986 +348: + node_pos: + - 238.60000000000002 + - 306.65000000000003 + outward_edges: + 347: 9.91421353816986 + 349: 9.91421353816986 +349: + node_pos: + - 237.5 + - 316.65000000000003 + outward_edges: + 348: 9.91421353816986 + 350: 25.547665876150134 +350: + node_pos: + - 235.60000000000002 + - 336.65000000000003 + outward_edges: + 349: 25.547665876150134 + 351: 9.760660153627397 +351: + node_pos: + - 234.8 + - 346.65000000000003 + outward_edges: + 350: 9.760660153627397 + 352: 9.760660153627397 +352: + node_pos: + - 233.95000000000002 + - 356.65000000000003 + outward_edges: + 351: 9.760660153627397 + 353: 9.76923879981041 +353: + node_pos: + - 233.20000000000002 + - 366.65000000000003 + outward_edges: + 352: 9.76923879981041 + 354: 9.789949476718903 +354: + node_pos: + - 232.4 + - 376.65000000000003 + outward_edges: + 353: 9.789949476718903 + 355: 9.789949476718903 +355: + node_pos: + - 231.60000000000002 + - 386.65000000000003 + outward_edges: + 87: 13.522792184352875 + 354: 9.789949476718903 +356: + node_pos: + - 251.7 + - 286.90000000000003 + outward_edges: + 99: 10.479898953437806 + 357: 9.76923879981041 +357: + node_pos: + - 261.7 + - 287.65000000000003 + outward_edges: + 29: 14.426345568895341 + 356: 9.76923879981041 +358: + node_pos: + - 278.05 + - 259.95 + outward_edges: + 19: 10.26923879981041 + 359: 9.677817445993425 +359: + node_pos: + - 277.45 + - 269.95 + outward_edges: + 358: 9.677817445993425 + 360: 9.698528122901918 +360: + node_pos: + - 276.8 + - 279.95 + outward_edges: + 29: 8.536396092176437 + 359: 9.698528122901918 +361: + node_pos: + - 289.15000000000003 + - 249.90000000000003 + outward_edges: + 19: 10.160660153627397 + 362: 9.70710676908493 +362: + node_pos: + - 299.15000000000003 + - 250.5 + outward_edges: + 361: 9.70710676908493 + 363: 9.627817445993424 +363: + node_pos: + - 309.15000000000003 + - 251.05 + outward_edges: + 362: 9.627817445993424 + 363: 7.659188276529313 +364: + node_pos: + - 245.4 + - 257.55 + outward_edges: + 89: 11.242640614509583 + 365: 10.411269783973694 +365: + node_pos: + - 242.95000000000002 + - 267.55 + outward_edges: + 364: 10.411269783973694 + 366: 10.059188276529312 +366: + node_pos: + - 241.45000000000002 + - 277.55 + outward_edges: + 99: 8.460660153627396 + 365: 10.059188276529312 +367: + node_pos: + - 259.3 + - 248.2 + outward_edges: + 89: 10.405634891986848 + 368: 9.70710676908493 +368: + node_pos: + - 269.3 + - 248.8 + outward_edges: + 19: 9.098528122901916 + 367: 9.70710676908493 +369: + node_pos: + - 357.90000000000003 + - 213.4 + outward_edges: + 27: 10.198528122901918 + 370: 9.615685415267945 +370: + node_pos: + - 367.90000000000003 + - 213.85000000000002 + outward_edges: + 90: 12.277817445993424 + 369: 9.615685415267945 +371: + node_pos: + - 324.35 + - 211.9 + outward_edges: + 49: 10.21923879981041 + 372: 9.594974738359452 +372: + node_pos: + - 334.35 + - 212.35000000000002 + outward_edges: + 27: 12.810660153627396 + 371: 9.594974738359452 +373: + node_pos: + - 280.7 + - 220.55 + outward_edges: + 20: 10.177817445993425 + 374: 9.727817445993423 +374: + node_pos: + - 280.05 + - 230.55 + outward_edges: + 373: 9.727817445993423 + 375: 9.677817445993425 +375: + node_pos: + - 279.40000000000003 + - 240.55 + outward_edges: + 19: 8.515685415267944 + 374: 9.677817445993425 +376: + node_pos: + - 291.05 + - 210.35000000000002 + outward_edges: + 20: 9.648528122901917 + 377: 9.586396092176438 +377: + node_pos: + - 301.05 + - 210.8 + outward_edges: + 49: 12.610660153627396 + 376: 9.586396092176438 +378: + node_pos: + - 255.8 + - 219.20000000000002 + outward_edges: + 79: 10.68345233798027 + 379: 10.473401814699173 +379: + node_pos: + - 253.2 + - 229.20000000000002 + outward_edges: + 378: 10.473401814699173 + 380: 10.535533845424652 +380: + node_pos: + - 250.45 + - 239.20000000000002 + outward_edges: + 89: 8.08345233798027 + 379: 10.535533845424652 +381: + node_pos: + - 268.40000000000003 + - 209.25 + outward_edges: + 20: 12.510660153627397 + 79: 10.198528122901918 +382: + node_pos: + - 414.6 + - 197.9 + outward_edges: + 70: 10.227817445993423 + 383: 9.627817445993424 +383: + node_pos: + - 414.05 + - 207.9 + outward_edges: + 382: 9.627817445993424 + 387: 16.942030984163285 +384: + node_pos: + - 411.05 + - 215.70000000000002 + outward_edges: + 385: 9.594974738359452 +385: + node_pos: + - 401.05 + - 215.3 + outward_edges: + 384: 9.594974738359452 + 386: 9.644974738359451 +386: + node_pos: + - 391.05 + - 214.85000000000002 + outward_edges: + 90: 10.26923879981041 + 385: 9.644974738359451 +387: + node_pos: + - 420.95000000000005 + - 216.10000000000002 + outward_edges: + 383: 16.942030984163285 + 388: 9.594974738359452 +388: + node_pos: + - 430.95000000000005 + - 216.5 + outward_edges: + 387: 9.594974738359452 + 389: 9.615685415267945 +389: + node_pos: + - 440.95000000000005 + - 216.95000000000002 + outward_edges: + 388: 9.615685415267945 +390: + node_pos: + - 447.35 + - 212.5 + outward_edges: + 390: 9.897056245803833 + 391: 9.636396092176438 +391: + node_pos: + - 447.85 + - 202.5 + outward_edges: + 98: 7.494974738359452 + 390: 9.636396092176438 +392: + node_pos: + - 424.8 + - 188.35000000000002 + outward_edges: + 70: 9.957716399431229 + 393: 10.266295045614243 +393: + node_pos: + - 434.8 + - 190.4 + outward_edges: + 98: 14.72903670668602 + 392: 10.266295045614243 +394: + node_pos: + - 348.70000000000005 + - 184.95000000000002 + outward_edges: + 91: 10.20710676908493 + 395: 9.586396092176438 +395: + node_pos: + - 348.25 + - 194.95000000000002 + outward_edges: + 394: 9.586396092176438 + 396: 9.665685415267944 +396: + node_pos: + - 347.75 + - 204.95000000000002 + outward_edges: + 27: 7.0949747383594515 + 395: 9.665685415267944 +397: + node_pos: + - 359.5 + - 175.3 + outward_edges: + 91: 10.209188276529312 + 398: 10.121320307254791 +398: + node_pos: + - 369.5 + - 177.0 + outward_edges: + 397: 10.121320307254791 + 399: 10.266295045614243 +399: + node_pos: + - 379.5 + - 179.05 + outward_edges: + 398: 10.266295045614243 + 402: 22.31040753722191 +400: + node_pos: + - 381.70000000000005 + - 187.9 + outward_edges: + 401: 9.665685415267944 +401: + node_pos: + - 381.20000000000005 + - 197.9 + outward_edges: + 90: 15.789949476718903 + 400: 9.665685415267944 +402: + node_pos: + - 393.6 + - 181.95000000000002 + outward_edges: + 399: 22.31040753722191 + 403: 10.24558436870575 +403: + node_pos: + - 403.6 + - 184.0 + outward_edges: + 70: 12.518376553058625 + 402: 10.24558436870575 +404: + node_pos: + - 315.15000000000003 + - 183.35000000000002 + outward_edges: + 67: 10.20710676908493 + 405: 9.586396092176438 +405: + node_pos: + - 314.70000000000005 + - 193.35000000000002 + outward_edges: + 404: 9.586396092176438 + 406: 9.636396092176438 +406: + node_pos: + - 314.20000000000005 + - 203.35000000000002 + outward_edges: + 49: 7.224264061450959 + 405: 9.636396092176438 +407: + node_pos: + - 325.90000000000003 + - 172.85000000000002 + outward_edges: + 51: 15.06923879981041 + 67: 9.827817445993425 +408: + node_pos: + - 282.6 + - 181.25 + outward_edges: + 41: 10.198528122901918 + 409: 9.657106769084931 +409: + node_pos: + - 282.05 + - 191.25 + outward_edges: + 408: 9.657106769084931 + 410: 9.686396092176437 +410: + node_pos: + - 281.5 + - 201.25 + outward_edges: + 20: 8.344974738359452 + 409: 9.686396092176437 +411: + node_pos: + - 293.5 + - 171.15 + outward_edges: + 41: 10.227817445993423 + 412: 9.586396092176438 +412: + node_pos: + - 303.5 + - 171.65 + outward_edges: + 67: 12.122792184352875 + 411: 9.586396092176438 +413: + node_pos: + - 259.3 + - 179.65 + outward_edges: + 69: 10.364213538169862 + 414: 9.748528122901917 +414: + node_pos: + - 258.6 + - 189.65 + outward_edges: + 413: 9.748528122901917 + 415: 9.66923879981041 +415: + node_pos: + - 257.95 + - 199.65 + outward_edges: + 79: 8.848528122901916 + 414: 9.66923879981041 +416: + node_pos: + - 271.15000000000003 + - 170.0 + outward_edges: + 41: 11.56923879981041 + 69: 10.579898953437805 +417: + node_pos: + - 293.1 + - 160.85000000000002 + outward_edges: + 71: 10.028427076339723 + 418: 10.287005722522736 +418: + node_pos: + - 303.1 + - 163.0 + outward_edges: + 417: 10.287005722522736 + 419: 10.287005722522736 +419: + node_pos: + - 313.1 + - 165.10000000000002 + outward_edges: + 418: 10.287005722522736 + 420: 21.156854152679443 +420: + node_pos: + - 333.1 + - 169.3 + outward_edges: + 61: 14.061879414319993 + 419: 21.156854152679443 +421: + node_pos: + - 265.45 + - 155.05 + outward_edges: + 69: 16.232590091228484 + 422: 10.928427076339723 +422: + node_pos: + - 276.05 + - 157.20000000000002 + outward_edges: + 71: 7.937005722522736 + 421: 10.928427076339723 +423: + node_pos: + - 315.06268310546875 + - 477.9519348144531 + outward_edges: + 239: 13.6274443044847 + 424: 7.761135935980155 +424: + node_pos: + - 312.3125 + - 485.1031799316406 + outward_edges: + 423: 7.761135935980155 diff --git a/output_yaml/connected_graph_low_level.yaml b/output_yaml/connected_graph_low_level.yaml new file mode 100644 index 0000000..b622123 --- /dev/null +++ b/output_yaml/connected_graph_low_level.yaml @@ -0,0 +1,710 @@ +0: + node_pos: + - 394.8 + - 456.1 + outward_edges: + 13: 41.99974738359452 + 40: 33.51837655305862 + 66: 33.65979790687561 + 85: 42.60832602977753 +1: + node_pos: + - 262.8 + - 444.3 + outward_edges: + 28: 33.69619399905205 + 32: 42.049747383594514 + 77: 36.09619399905205 + 86: 42.86543279886246 +2: + node_pos: + - 368.90000000000003 + - 366.5 + outward_edges: + 14: 46.85330076813698 + 15: 33.692640614509585 + 52: 32.1512192606926 +3: + node_pos: + - 407.40000000000003 + - 628.1500000000001 + outward_edges: {} +4: + node_pos: + - 340.05 + - 622.0 + outward_edges: + 7: 55.46248904466629 + 42: 237.84589756131174 + 93: 24.224011445045473 +5: + node_pos: + - 241.5 + - 586.1 + outward_edges: + 42: 6.91923879981041 + 54: 8.156244522333145 +6: + node_pos: + - 218.0 + - 576.9 + outward_edges: + 21: 17.271320307254793 + 65: 168.98473217487336 + 69: 1308.6000000000001 +7: + node_pos: + - 345.3 + - 568.1 + outward_edges: + 4: 55.46248904466629 + 34: 13.924873691797258 + 74: 38.91352979838848 +8: + node_pos: + - 363.20000000000005 + - 530.65 + outward_edges: + 9: 16.90538227558136 + 24: 3.589949476718903 +9: + node_pos: + - 350.55 + - 525.8000000000001 + outward_edges: + 8: 16.90538227558136 + 84: 7.502691137790681 + 97: 13.035533845424652 +10: + node_pos: + - 347.75 + - 500.90000000000003 + outward_edges: + 38: 8.716295045614244 + 76: 3.847056245803833 +11: + node_pos: + - 328.98284912109375 + - 449.8285217285156 + outward_edges: + 28: 32.211685752608886 + 30: 41.31543279886246 + 40: 32.211877859025 +12: + node_pos: + - 431.1 + - 417.6 + outward_edges: + 13: 33.37695519924164 + 66: 41.99619399905205 + 103: 47.7721084445715 +13: + node_pos: + - 398.20000000000005 + - 415.0 + outward_edges: + 0: 41.99974738359452 + 12: 33.37695519924164 + 14: 33.842640614509584 + 15: 46.453300768136984 +14: + node_pos: + - 365.1 + - 412.35 + outward_edges: + 2: 46.85330076813698 + 13: 33.842640614509584 + 30: 32.90979790687561 + 40: 41.62903670668602 +15: + node_pos: + - 401.95000000000005 + - 369.5 + outward_edges: + 2: 33.692640614509585 + 13: 46.453300768136984 + 103: 31.85832602977753 +16: + node_pos: + - 304.15000000000003 + - 360.5 + outward_edges: + 17: 29.859797906875613 + 31: 46.9518288910389 + 52: 34.17903670668602 + 88: 33.86690467596054 +17: + node_pos: + - 306.1 + - 331.3 + outward_edges: + 16: 29.859797906875613 + 18: 33.816904675960544 +18: + node_pos: + - 273.15000000000003 + - 328.0 + outward_edges: + 17: 33.816904675960544 + 29: 39.92192993760109 + 78: 31.139087229967117 + 88: 29.735533845424655 +19: + node_pos: + - 278.75 + - 249.40000000000003 + outward_edges: + 20: 39.80269113779068 + 29: 39.86482316851616 + 89: 30.352691137790682 +20: + node_pos: + - 281.15000000000003 + - 210.05 + outward_edges: + 19: 39.80269113779068 + 41: 39.599137753248215 + 49: 32.98700572252274 + 79: 23.279898953437808 +21: + node_pos: + - 235.15 + - 578.5 + outward_edges: + 6: 17.271320307254793 + 37: 50.37878409028053 + 54: 2.332842707633972 +24: + node_pos: + - 367.0 + - 531.5500000000001 + outward_edges: + 8: 3.589949476718903 + 58: 134.71122596263885 + 80: 51.231118214130404 +25: + node_pos: + - 243.55 + - 531.15 + outward_edges: + 37: 7.7142135381698616 + 96: 20.56984843015671 +26: + node_pos: + - 325.1 + - 492.05 + outward_edges: + 28: 110.89066350460052 + 38: 39.95599190592766 + 39: 34.166904675960545 +27: + node_pos: + - 347.40000000000003 + - 212.5 + outward_edges: + 49: 33.81629504561425 + 90: 33.28345233798027 + 91: 38.26629504561424 +28: + node_pos: + - 295.75 + - 447.45000000000005 + outward_edges: + 1: 33.69619399905205 + 11: 32.211685752608886 + 26: 110.89066350460052 + 31: 41.606854152679446 + 39: 42.64472212195397 +29: + node_pos: + - 276.2 + - 288.8 + outward_edges: + 18: 39.92192993760109 + 19: 39.86482316851616 + 99: 35.82903670668602 +30: + node_pos: + - 332.75 + - 409.55 + outward_edges: + 11: 41.31543279886246 + 14: 32.90979790687561 + 31: 33.71690467596054 + 52: 47.23467159867287 +31: + node_pos: + - 299.90000000000003 + - 406.20000000000005 + outward_edges: + 16: 46.9518288910389 + 28: 41.606854152679446 + 30: 33.71690467596054 + 32: 34.782590091228485 +32: + node_pos: + - 266.2 + - 403.15000000000003 + outward_edges: + 1: 42.049747383594514 + 31: 34.782590091228485 + 87: 36.33614347577095 + 88: 47.31396092176438 +33: + node_pos: + - 416.0 + - 593.35 + outward_edges: {} +34: + node_pos: + - 359.0 + - 570.1 + outward_edges: + 7: 13.924873691797258 + 46: 56.6026170283556 +37: + node_pos: + - 235.8 + - 532.1 + outward_edges: + 21: 50.37878409028053 + 25: 7.7142135381698616 +38: + node_pos: + - 356.15000000000003 + - 498.95000000000005 + outward_edges: + 10: 8.716295045614244 + 26: 39.95599190592766 + 102: 183.0484843015671 +39: + node_pos: + - 291.85 + - 489.0 + outward_edges: + 26: 34.166904675960545 + 28: 42.64472212195397 + 86: 33.92903670668602 +40: + node_pos: + - 361.85 + - 453.5 + outward_edges: + 0: 33.51837655305862 + 11: 32.211877859025 + 14: 41.62903670668602 + 72: 43.07045806050301 +41: + node_pos: + - 283.0 + - 170.75 + outward_edges: + 20: 39.599137753248215 + 67: 33.099137753248215 + 69: 22.71984843015671 + 71: 10.482842707633973 +42: + node_pos: + - 240.65 + - 593.3000000000001 + outward_edges: + 4: 237.84589756131174 + 5: 6.91923879981041 + 64: 21.9911687374115 +43: + node_pos: + - 361.20000000000005 + - 533.0500000000001 + outward_edges: + 74: 10.70710676908493 + 83: 14.811269783973694 + 94: 52.82056245803833 +44: + node_pos: + - 285.8 + - 507.80000000000007 + outward_edges: + 48: 14.466295045614244 + 59: 5.210660153627396 + 100: 25.50269113779068 +45: + node_pos: + - 444.25 + - 576.9 + outward_edges: + 55: 7.11923879981041 + 62: 5.807106769084931 +46: + node_pos: + - 405.95000000000005 + - 573.4 + outward_edges: + 34: 56.6026170283556 + 56: 18.03198046088219 + 94: 27.294112491607667 +47: + node_pos: + - 448.05 + - 549.45 + outward_edges: + 75: 39.6046244263649 +48: + node_pos: + - 276.85 + - 501.45000000000005 + outward_edges: + 44: 14.466295045614244 + 59: 10.288477599620819 +49: + node_pos: + - 313.85 + - 211.0 + outward_edges: + 20: 32.98700572252274 + 27: 33.81629504561425 + 67: 38.366295045614244 +51: + node_pos: + - 341.20000000000005 + - 173.5 + outward_edges: + 67: 25.46776692271233 + 71: 68.2439642727375 +52: + node_pos: + - 337.40000000000003 + - 363.65000000000003 + outward_edges: + 2: 32.1512192606926 + 16: 34.17903670668602 + 30: 47.23467159867287 +54: + node_pos: + - 237.9 + - 579.0500000000001 + outward_edges: + 5: 8.156244522333145 + 21: 2.332842707633972 +55: + node_pos: + - 436.95000000000005 + - 577.3000000000001 + outward_edges: + 45: 7.11923879981041 + 56: 13.866295045614244 + 62: 11.322792184352876 +56: + node_pos: + - 423.45000000000005 + - 576.1 + outward_edges: + 46: 18.03198046088219 + 55: 13.866295045614244 +58: + node_pos: + - 432.75 + - 548.65 + outward_edges: + 24: 134.71122596263885 + 62: 36.89472212195397 +59: + node_pos: + - 287.05 + - 502.45000000000005 + outward_edges: + 44: 5.210660153627396 + 48: 10.288477599620819 + 63: 55.75954529047013 +60: + node_pos: + - 246.8 + - 498.55 + outward_edges: + 65: 17.182337474822997 + 96: 64.93944424390793 +61: + node_pos: + - 343.75 + - 173.10000000000002 + outward_edges: + 91: 5.493502861261368 +62: + node_pos: + - 444.15000000000003 + - 570.75 + outward_edges: + 45: 5.807106769084931 + 55: 11.322792184352876 + 58: 36.89472212195397 +63: + node_pos: + - 334.90000000000003 + - 527.1 + outward_edges: + 59: 55.75954529047013 + 92: 41.61248904466629 + 97: 6.239949476718903 +64: + node_pos: + - 253.3 + - 602.25 + outward_edges: + 42: 21.9911687374115 + 93: 131.55519023537636 +65: + node_pos: + - 232.55 + - 490.6 + outward_edges: + 6: 168.98473217487336 + 60: 17.182337474822997 + 86: 28.749494767189027 +66: + node_pos: + - 427.90000000000003 + - 458.8 + outward_edges: + 0: 33.65979790687561 + 12: 41.99619399905205 +67: + node_pos: + - 315.75 + - 172.85000000000002 + outward_edges: + 41: 33.099137753248215 + 49: 38.366295045614244 + 51: 25.46776692271233 +69: + node_pos: + - 260.65000000000003 + - 169.20000000000002 + outward_edges: + 6: 1308.6000000000001 + 41: 22.71984843015671 + 71: 36.367261689901355 + 79: 40.36335129141808 +70: + node_pos: + - 415.25 + - 187.35000000000002 + outward_edges: + 91: 105.20315254926682 + 98: 36.11873356699944 +71: + node_pos: + - 283.45 + - 159.8 + outward_edges: + 41: 10.482842707633973 + 51: 68.2439642727375 + 69: 36.367261689901355 +72: + node_pos: + - 358.45000000000005 + - 495.6 + outward_edges: + 40: 43.07045806050301 + 85: 33.80477264523506 +74: + node_pos: + - 350.15000000000003 + - 533.2 + outward_edges: + 7: 38.91352979838848 + 43: 10.70710676908493 + 83: 2.5071067690849307 +75: + node_pos: + - 434.6 + - 519.35 + outward_edges: + 47: 39.6046244263649 + 84: 96.33832938075066 +76: + node_pos: + - 345.05 + - 498.20000000000005 + outward_edges: + 10: 3.847056245803833 + 84: 13.481549337506294 +77: + node_pos: + - 227.5 + - 441.15000000000003 + outward_edges: + 1: 36.09619399905205 + 87: 41.729036706686024 +78: + node_pos: + - 242.60000000000002 + - 325.3 + outward_edges: + 18: 31.139087229967117 +79: + node_pos: + - 257.90000000000003 + - 208.75 + outward_edges: + 20: 23.279898953437808 + 69: 40.36335129141808 + 89: 41.60721116662026 +80: + node_pos: + - 416.95000000000005 + - 536.1 + outward_edges: + 24: 51.231118214130404 +81: + node_pos: + - 342.35 + - 567.25 + outward_edges: + 92: 11.334924215078354 +83: + node_pos: + - 350.25 + - 530.6 + outward_edges: + 43: 14.811269783973694 + 74: 2.5071067690849307 +84: + node_pos: + - 347.90000000000003 + - 518.8000000000001 + outward_edges: + 9: 7.502691137790681 + 75: 96.33832938075066 + 76: 13.481549337506294 +85: + node_pos: + - 391.45000000000005 + - 497.90000000000003 + outward_edges: + 0: 42.60832602977753 + 72: 33.80477264523506 +86: + node_pos: + - 258.95 + - 486.1 + outward_edges: + 1: 42.86543279886246 + 39: 33.92903670668602 + 65: 28.749494767189027 +87: + node_pos: + - 230.9 + - 400.35 + outward_edges: + 32: 36.33614347577095 + 77: 41.729036706686024 + 99: 123.26848095059395 +88: + node_pos: + - 271.1 + - 357.25 + outward_edges: + 16: 33.86690467596054 + 18: 29.735533845424655 + 32: 47.31396092176438 +89: + node_pos: + - 248.75 + - 247.10000000000002 + outward_edges: + 19: 30.352691137790682 + 79: 41.60721116662026 + 99: 41.830865597724916 +90: + node_pos: + - 380.5 + - 214.0 + outward_edges: + 27: 33.28345233798027 +91: + node_pos: + - 349.35 + - 174.45000000000002 + outward_edges: + 27: 38.26629504561424 + 61: 5.493502861261368 + 70: 105.20315254926682 +92: + node_pos: + - 330.90000000000003 + - 567.0500000000001 + outward_edges: + 63: 41.61248904466629 + 81: 11.334924215078354 +93: + node_pos: + - 316.95000000000005 + - 618.75 + outward_edges: + 4: 24.224011445045473 + 64: 131.55519023537636 +94: + node_pos: + - 408.45000000000005 + - 546.5 + outward_edges: + 43: 52.82056245803833 + 46: 27.294112491607667 +96: + node_pos: + - 263.7 + - 533.15 + outward_edges: + 25: 20.56984843015671 + 60: 64.93944424390793 + 100: 47.37314919829369 +97: + node_pos: + - 341.35 + - 527.7 + outward_edges: + 9: 13.035533845424652 + 63: 6.239949476718903 +98: + node_pos: + - 448.25 + - 194.60000000000002 + outward_edges: + 70: 36.11873356699944 +99: + node_pos: + - 241.25 + - 286.2 + outward_edges: + 29: 35.82903670668602 + 87: 123.26848095059395 + 89: 41.830865597724916 +100: + node_pos: + - 284.2564697265625 + - 532.891845703125 + outward_edges: + 44: 25.50269113779068 + 96: 47.37314919829369 +101: + node_pos: + - 265.7926330566406 + - 500.62896728515625 + outward_edges: {} +102: + node_pos: + - 425.0286865234375 + - 500.0166931152344 + outward_edges: + 38: 183.0484843015671 +103: + node_pos: + - 431.6510009765625 + - 372.10205078125 + outward_edges: + 12: 47.7721084445715 + 15: 31.85832602977753 +104: + node_pos: + - 400.8990478515625 + - 387.8114013671875 + outward_edges: {} diff --git a/output_yaml/edges_edited.yaml b/output_yaml/edges_edited.yaml new file mode 100644 index 0000000..78c3cc7 --- /dev/null +++ b/output_yaml/edges_edited.yaml @@ -0,0 +1,5272 @@ +? !!python/tuple +- 0 +- 66 +- 101 +: - - 394.8 + - 456.1 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 0 +- 85 +- 100 +: - - 394.8 + - 456.1 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 0 +- 228 +- 412 +: - - 394.8 + - 456.1 + - - 394.0 + - 466.65000000000003 +? !!python/tuple +- 0 +- 231 +- 413 +: - - 394.8 + - 456.1 + - - 405.35 + - 456.95000000000005 +? !!python/tuple +- 1 +- 28 +- 109 +: - - 262.8 + - 444.3 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 1 +- 86 +- 108 +: - - 262.8 + - 444.3 + - - 258.95 + - 486.1 +? !!python/tuple +- 1 +- 248 +- 432 +: - - 262.8 + - 444.3 + - - 261.85 + - 454.85 +? !!python/tuple +- 1 +- 251 +- 433 +: - - 262.8 + - 444.3 + - - 273.35 + - 445.25 +? !!python/tuple +- 2 +- 2 +- 137 +: - - 368.90000000000003 + - 366.5 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 2 +- 14 +- 127 +: - - 368.90000000000003 + - 366.5 + - - 365.1 + - 412.35 +? !!python/tuple +- 2 +- 15 +- 128 +: - - 368.90000000000003 + - 366.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 2 +- 297 +- 512 +: - - 368.90000000000003 + - 366.5 + - - 368.05 + - 377.05 +? !!python/tuple +- 2 +- 300 +- 513 +: - - 368.90000000000003 + - 366.5 + - - 379.45000000000005 + - 367.45000000000005 +? !!python/tuple +- 2 +- 330 +- 532 +: - - 368.90000000000003 + - 366.5 + - - 370.35 + - 349.05 +? !!python/tuple +- 3 +- 3 +- 0 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 1 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 180 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 183 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 5 +- 5 +- 12 +: - - 241.5 + - 586.1 + - - 241.5 + - 586.1 +? !!python/tuple +- 5 +- 5 +- 220 +: - - 241.5 + - 586.1 + - - 241.5 + - 586.1 +? !!python/tuple +- 5 +- 42 +- 11 +: - - 241.5 + - 586.1 + - - 240.65 + - 593.3000000000001 +? !!python/tuple +- 5 +- 42 +- 219 +: - - 241.5 + - 586.1 + - - 240.65 + - 593.3000000000001 +? !!python/tuple +- 6 +- 6 +- 16 +: - - 218.0 + - 576.9 + - - 218.0 + - 576.9 +? !!python/tuple +- 6 +- 6 +- 251 +: - - 218.0 + - 576.9 + - - 218.0 + - 576.9 +? !!python/tuple +- 6 +- 21 +- 18 +: - - 218.0 + - 576.9 + - - 235.15 + - 578.5 +? !!python/tuple +- 6 +- 21 +- 230 +: - - 218.0 + - 576.9 + - - 235.15 + - 578.5 +? !!python/tuple +- 7 +- 4 +- 30 +: - - 345.3 + - 568.1 + - - 340.05 + - 622.0 +? !!python/tuple +- 7 +- 34 +- 31 +: - - 345.3 + - 568.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 7 +- 34 +- 246 +: - - 345.3 + - 568.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 7 +- 139 +- 245 +: - - 345.3 + - 568.1 + - - 344.55 + - 578.65 +? !!python/tuple +- 8 +- 24 +- 68 +: - - 363.20000000000005 + - 530.65 + - - 367.0 + - 531.5500000000001 +? !!python/tuple +- 8 +- 24 +- 308 +: - - 363.20000000000005 + - 530.65 + - - 367.0 + - 531.5500000000001 +? !!python/tuple +- 9 +- 8 +- 75 +: - - 350.55 + - 525.8000000000001 + - - 363.20000000000005 + - 530.65 +? !!python/tuple +- 9 +- 8 +- 316 +: - - 350.55 + - 525.8000000000001 + - - 363.20000000000005 + - 530.65 +? !!python/tuple +- 10 +- 38 +- 87 +: - - 347.75 + - 500.90000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 10 +- 38 +- 363 +: - - 347.75 + - 500.90000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 11 +- 26 +- 104 +: - - 328.85 + - 450.6 + - - 325.1 + - 492.05 +? !!python/tuple +- 11 +- 40 +- 105 +: - - 328.85 + - 450.6 + - - 362.0938415527344 + - 453.5181579589844 +? !!python/tuple +- 11 +- 238 +- 422 +: - - 328.85 + - 450.6 + - - 327.90000000000003 + - 461.1 +? !!python/tuple +- 11 +- 241 +- 423 +: - - 328.85 + - 450.6 + - - 339.40000000000003 + - 451.55 +? !!python/tuple +- 12 +- 12 +- 113 +: - - 431.1 + - 417.6 + - - 431.1 + - 417.6 +? !!python/tuple +- 12 +- 66 +- 112 +: - - 431.1 + - 417.6 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 12 +- 262 +- 457 +: - - 431.1 + - 417.6 + - - 441.55 + - 418.5 +? !!python/tuple +- 12 +- 325 +- 475 +: - - 431.1 + - 417.6 + - - 432.05 + - 406.8 +? !!python/tuple +- 13 +- 0 +- 114 +: - - 398.20000000000005 + - 415.0 + - - 394.8 + - 456.1 +? !!python/tuple +- 13 +- 12 +- 115 +: - - 398.20000000000005 + - 415.0 + - - 431.1 + - 417.6 +? !!python/tuple +- 13 +- 15 +- 126 +: - - 398.20000000000005 + - 415.0 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 13 +- 264 +- 461 +: - - 398.20000000000005 + - 415.0 + - - 397.35 + - 425.5 +? !!python/tuple +- 13 +- 267 +- 462 +: - - 398.20000000000005 + - 415.0 + - - 408.75 + - 415.90000000000003 +? !!python/tuple +- 14 +- 13 +- 117 +: - - 365.1 + - 412.35 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 14 +- 40 +- 116 +: - - 365.1 + - 412.35 + - - 362.0938415527344 + - 453.5181579589844 +? !!python/tuple +- 14 +- 269 +- 466 +: - - 365.1 + - 412.35 + - - 364.3 + - 422.90000000000003 +? !!python/tuple +- 14 +- 272 +- 467 +: - - 365.1 + - 412.35 + - - 375.6 + - 413.20000000000005 +? !!python/tuple +- 15 +- 15 +- 135 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 15 +- 136 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 321 +- 507 +: - - 401.95000000000005 + - 369.5 + - - 418.05 + - 370.85 +? !!python/tuple +- 15 +- 328 +- 520 +: - - 401.95000000000005 + - 369.5 + - - 402.65000000000003 + - 361.70000000000005 +? !!python/tuple +- 16 +- 31 +- 131 +: - - 304.15000000000003 + - 360.5 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 16 +- 52 +- 132 +: - - 304.15000000000003 + - 360.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 16 +- 307 +- 522 +: - - 304.15000000000003 + - 360.5 + - - 303.15000000000003 + - 371.05 +? !!python/tuple +- 16 +- 310 +- 523 +: - - 304.15000000000003 + - 360.5 + - - 314.65000000000003 + - 361.55 +? !!python/tuple +- 17 +- 16 +- 139 +: - - 306.1 + - 331.3 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 17 +- 17 +- 140 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 17 +- 545 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 333 +- 543 +: - - 306.1 + - 331.3 + - - 305.85 + - 341.8 +? !!python/tuple +- 18 +- 17 +- 142 +: - - 273.15000000000003 + - 328.0 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 88 +- 141 +: - - 273.15000000000003 + - 328.0 + - - 271.1 + - 357.25 +? !!python/tuple +- 18 +- 335 +- 547 +: - - 273.15000000000003 + - 328.0 + - - 272.35 + - 338.55 +? !!python/tuple +- 18 +- 337 +- 548 +: - - 273.15000000000003 + - 328.0 + - - 283.65000000000003 + - 328.90000000000003 +? !!python/tuple +- 19 +- 19 +- 150 +: - - 278.75 + - 249.40000000000003 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 19 +- 20 +- 155 +: - - 278.75 + - 249.40000000000003 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 19 +- 361 +- 578 +: - - 278.75 + - 249.40000000000003 + - - 289.15000000000003 + - 249.90000000000003 +? !!python/tuple +- 19 +- 375 +- 583 +: - - 278.75 + - 249.40000000000003 + - - 279.40000000000003 + - 240.55 +? !!python/tuple +- 20 +- 41 +- 168 +: - - 281.15000000000003 + - 210.05 + - - 283.0 + - 170.75 +? !!python/tuple +- 20 +- 49 +- 156 +: - - 281.15000000000003 + - 210.05 + - - 313.85 + - 211.0 +? !!python/tuple +- 20 +- 376 +- 604 +: - - 281.15000000000003 + - 210.05 + - - 291.05 + - 210.35000000000002 +? !!python/tuple +- 20 +- 410 +- 612 +: - - 281.15000000000003 + - 210.05 + - - 281.5 + - 201.25 +? !!python/tuple +- 21 +- 54 +- 14 +: - - 235.15 + - 578.5 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 21 +- 54 +- 224 +: - - 235.15 + - 578.5 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 22 +- 58 +- 44 +: - - 428.3 + - 545.8000000000001 + - - 432.75 + - 548.65 +? !!python/tuple +- 22 +- 58 +- 267 +: - - 428.3 + - 545.8000000000001 + - - 432.75 + - 548.65 +? !!python/tuple +- 24 +- 50 +- 73 +: - - 367.0 + - 531.5500000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 24 +- 50 +- 314 +: - - 367.0 + - 531.5500000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 24 +- 80 +- 64 +: - - 367.0 + - 531.5500000000001 + - - 416.95000000000005 + - 536.1 +? !!python/tuple +- 24 +- 159 +- 303 +: - - 367.0 + - 531.5500000000001 + - - 377.5 + - 532.65 +? !!python/tuple +- 25 +- 96 +- 65 +: - - 243.55 + - 531.15 + - - 263.7 + - 533.15 +? !!python/tuple +- 25 +- 163 +- 304 +: - - 243.55 + - 531.15 + - - 254.05 + - 532.65 +? !!python/tuple +- 26 +- 38 +- 92 +: - - 325.1 + - 492.05 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 26 +- 201 +- 375 +: - - 325.1 + - 492.05 + - - 335.6 + - 493.65000000000003 +? !!python/tuple +- 27 +- 90 +- 153 +: - - 347.40000000000003 + - 212.5 + - - 380.5 + - 214.0 +? !!python/tuple +- 27 +- 91 +- 162 +: - - 347.40000000000003 + - 212.5 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 27 +- 369 +- 597 +: - - 347.40000000000003 + - 212.5 + - - 357.90000000000003 + - 213.4 +? !!python/tuple +- 27 +- 396 +- 609 +: - - 347.40000000000003 + - 212.5 + - - 347.75 + - 204.95000000000002 +? !!python/tuple +- 28 +- 11 +- 107 +: - - 295.75 + - 447.45000000000005 + - - 328.85 + - 450.6 +? !!python/tuple +- 28 +- 39 +- 106 +: - - 295.75 + - 447.45000000000005 + - - 291.85 + - 489.0 +? !!python/tuple +- 28 +- 243 +- 427 +: - - 295.8104248046875 + - 447.5629577636719 + - - 294.90000000000003 + - 457.95000000000005 +? !!python/tuple +- 28 +- 246 +- 428 +: - - 295.8104248046875 + - 447.5629577636719 + - - 306.25 + - 448.45000000000005 +? !!python/tuple +- 29 +- 18 +- 145 +: - - 276.2 + - 288.8 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 29 +- 19 +- 149 +: - - 276.2 + - 288.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 29 +- 29 +- 146 +: - - 276.2 + - 288.8 + - - 276.2 + - 288.8 +? !!python/tuple +- 29 +- 341 +- 562 +: - - 276.2 + - 288.8 + - - 275.55 + - 299.3 +? !!python/tuple +- 29 +- 344 +- 563 +: - - 276.2 + - 288.8 + - - 286.7 + - 289.3 +? !!python/tuple +- 30 +- 11 +- 118 +: - - 332.75 + - 409.55 + - - 328.85 + - 450.6 +? !!python/tuple +- 30 +- 14 +- 119 +: - - 332.75 + - 409.55 + - - 365.1 + - 412.35 +? !!python/tuple +- 30 +- 274 +- 471 +: - - 332.75 + - 409.55 + - - 331.75 + - 420.1 +? !!python/tuple +- 30 +- 277 +- 472 +: - - 332.75 + - 409.55 + - - 343.3 + - 410.5 +? !!python/tuple +- 31 +- 28 +- 120 +: - - 299.90000000000003 + - 406.20000000000005 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 31 +- 30 +- 121 +: - - 299.90000000000003 + - 406.20000000000005 + - - 332.75 + - 409.55 +? !!python/tuple +- 31 +- 279 +- 476 +: - - 299.90000000000003 + - 406.20000000000005 + - - 298.75 + - 416.70000000000005 +? !!python/tuple +- 31 +- 282 +- 477 +: - - 299.90000000000003 + - 406.20000000000005 + - - 310.40000000000003 + - 407.35 +? !!python/tuple +- 32 +- 1 +- 122 +: - - 266.2 + - 403.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 32 +- 31 +- 123 +: - - 266.2 + - 403.15000000000003 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 32 +- 284 +- 480 +: - - 266.2 + - 403.15000000000003 + - - 265.40000000000003 + - 413.65000000000003 +? !!python/tuple +- 32 +- 287 +- 481 +: - - 266.2 + - 403.15000000000003 + - - 276.65000000000003 + - 404.05 +? !!python/tuple +- 33 +- 33 +- 7 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 9 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 212 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 214 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 34 +- 34 +- 27 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 34 +- 29 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 34 +- 241 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 137 +- 244 +: - - 359.0 + - 570.1 + - - 368.95000000000005 + - 570.4 +? !!python/tuple +- 35 +- 22 +- 47 +: - - 429.8 + - 540.35 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 35 +- 22 +- 277 +: - - 429.8 + - 540.35 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 37 +- 21 +- 63 +: - - 235.8 + - 532.1 + - - 235.15 + - 578.5 +? !!python/tuple +- 37 +- 25 +- 66 +: - - 235.8 + - 532.1 + - - 243.55 + - 531.15 +? !!python/tuple +- 37 +- 25 +- 306 +: - - 235.8 + - 532.1 + - - 243.55 + - 531.15 +? !!python/tuple +- 37 +- 155 +- 301 +: - - 235.8 + - 532.1 + - - 239.4 + - 541.0 +? !!python/tuple +- 38 +- 75 +- 98 +: - - 356.15000000000003 + - 498.95000000000005 + - - 434.6 + - 519.35 +? !!python/tuple +- 38 +- 225 +- 372 +: - - 356.15000000000003 + - 498.95000000000005 + - - 399.40000000000003 + - 504.5 +? !!python/tuple +- 39 +- 26 +- 95 +: - - 291.85 + - 489.0 + - - 325.1 + - 492.05 +? !!python/tuple +- 39 +- 212 +- 381 +: - - 291.85 + - 489.0 + - - 302.3 + - 490.6 +? !!python/tuple +- 40 +- 0 +- 103 +: - - 362.0938415527344 + - 453.5181579589844 + - - 394.8 + - 456.1 +? !!python/tuple +- 40 +- 72 +- 102 +: - - 362.0938415527344 + - 453.5181579589844 + - - 358.45000000000005 + - 495.6 +? !!python/tuple +- 40 +- 233 +- 417 +: - - 362.0938415527344 + - 453.5181579589844 + - - 360.90000000000003 + - 464.0 +? !!python/tuple +- 40 +- 236 +- 418 +: - - 362.0938415527344 + - 453.5181579589844 + - - 372.35 + - 454.3 +? !!python/tuple +- 41 +- 67 +- 169 +: - - 283.0 + - 170.75 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 41 +- 71 +- 172 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 71 +- 654 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 411 +- 646 +: - - 283.0 + - 170.75 + - - 293.5 + - 171.15 +? !!python/tuple +- 42 +- 4 +- 8 +: - - 240.65 + - 593.3000000000001 + - - 340.05 + - 622.0 +? !!python/tuple +- 42 +- 64 +- 6 +: - - 240.65 + - 593.3000000000001 + - - 253.3 + - 602.25 +? !!python/tuple +- 42 +- 105 +- 213 +: - - 240.65 + - 593.3000000000001 + - - 234.05 + - 602.45 +? !!python/tuple +- 43 +- 94 +- 61 +: - - 361.20000000000005 + - 533.0500000000001 + - - 408.45000000000005 + - 546.5 +? !!python/tuple +- 43 +- 151 +- 296 +: - - 361.20000000000005 + - 533.0500000000001 + - - 370.6 + - 542.4 +? !!python/tuple +- 44 +- 183 +- 344 +: - - 285.8 + - 507.80000000000007 + - - 285.35 + - 518.3000000000001 +? !!python/tuple +- 45 +- 45 +- 4 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 45 +- 45 +- 17 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 45 +- 45 +- 229 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 46 +- 56 +- 23 +: - - 405.95000000000005 + - 573.4 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 46 +- 56 +- 235 +: - - 405.95000000000005 + - 573.4 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 47 +- 47 +- 35 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 36 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 37 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 38 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 39 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 42 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 45 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 260 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 48 +- 44 +- 85 +: - - 276.85 + - 501.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 48 +- 44 +- 356 +: - - 276.85 + - 501.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 48 +- 59 +- 86 +: - - 276.85 + - 501.45000000000005 + - - 287.05 + - 502.45000000000005 +? !!python/tuple +- 48 +- 59 +- 357 +: - - 276.85 + - 501.45000000000005 + - - 287.05 + - 502.45000000000005 +? !!python/tuple +- 49 +- 27 +- 154 +: - - 313.85 + - 211.0 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 49 +- 67 +- 165 +: - - 313.85 + - 211.0 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 49 +- 371 +- 600 +: - - 313.85 + - 211.0 + - - 324.35 + - 211.9 +? !!python/tuple +- 49 +- 406 +- 610 +: - - 313.85 + - 211.0 + - - 314.20000000000005 + - 203.35000000000002 +? !!python/tuple +- 50 +- 23 +- 53 +: - - 434.95000000000005 + - 537.45 + - - 441.0 + - 538.15 +? !!python/tuple +- 50 +- 23 +- 284 +: - - 434.95000000000005 + - 537.45 + - - 441.0 + - 538.15 +? !!python/tuple +- 52 +- 2 +- 130 +: - - 337.40000000000003 + - 363.65000000000003 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 52 +- 30 +- 129 +: - - 337.40000000000003 + - 363.65000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 52 +- 52 +- 138 +: - - 337.40000000000003 + - 363.65000000000003 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 52 +- 302 +- 517 +: - - 337.40000000000003 + - 363.65000000000003 + - - 336.35 + - 374.15000000000003 +? !!python/tuple +- 52 +- 305 +- 518 +: - - 337.40000000000003 + - 363.65000000000003 + - - 347.8 + - 364.6 +? !!python/tuple +- 53 +- 23 +- 59 +: - - 442.35 + - 535.35 + - - 441.0 + - 538.15 +? !!python/tuple +- 53 +- 23 +- 291 +: - - 442.35 + - 535.35 + - - 441.0 + - 538.15 +? !!python/tuple +- 53 +- 47 +- 58 +: - - 442.35 + - 535.35 + - - 448.05 + - 549.45 +? !!python/tuple +- 53 +- 47 +- 290 +: - - 442.35 + - 535.35 + - - 448.05 + - 549.45 +? !!python/tuple +- 54 +- 5 +- 13 +: - - 237.9 + - 579.0500000000001 + - - 241.5 + - 586.1 +? !!python/tuple +- 54 +- 5 +- 221 +: - - 237.9 + - 579.0500000000001 + - - 241.5 + - 586.1 +? !!python/tuple +- 54 +- 54 +- 22 +: - - 237.9 + - 579.0500000000001 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 54 +- 54 +- 234 +: - - 237.9 + - 579.0500000000001 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 55 +- 45 +- 19 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.25 + - 576.9 +? !!python/tuple +- 55 +- 45 +- 231 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.25 + - 576.9 +? !!python/tuple +- 55 +- 55 +- 5 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 55 +- 15 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 55 +- 227 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 62 +- 28 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 56 +- 55 +- 21 +: - - 423.45000000000005 + - 576.1 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 56 +- 55 +- 233 +: - - 423.45000000000005 + - 576.1 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 56 +- 56 +- 20 +: - - 423.45000000000005 + - 576.1 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 56 +- 56 +- 232 +: - - 423.45000000000005 + - 576.1 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 57 +- 46 +- 25 +: - - 391.3 + - 573.1 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 57 +- 46 +- 237 +: - - 391.3 + - 573.1 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 57 +- 57 +- 24 +: - - 391.3 + - 573.1 + - - 391.3 + - 573.1 +? !!python/tuple +- 57 +- 57 +- 236 +: - - 391.3 + - 573.1 + - - 391.3 + - 573.1 +? !!python/tuple +- 58 +- 58 +- 40 +: - - 432.75 + - 548.65 + - - 432.75 + - 548.65 +? !!python/tuple +- 58 +- 58 +- 262 +: - - 432.75 + - 548.65 + - - 432.75 + - 548.65 +? !!python/tuple +- 58 +- 62 +- 41 +: - - 432.75 + - 548.65 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 58 +- 146 +- 263 +: - - 432.75 + - 548.65 + - - 445.75 + - 556.65 +? !!python/tuple +- 59 +- 44 +- 83 +: - - 287.05 + - 502.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 59 +- 44 +- 353 +: - - 287.05 + - 502.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 59 +- 63 +- 84 +: - - 287.05 + - 502.45000000000005 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 59 +- 190 +- 355 +: - - 287.05 + - 502.45000000000005 + - - 297.20000000000005 + - 502.80000000000007 +? !!python/tuple +- 60 +- 96 +- 90 +: - - 246.8 + - 498.55 + - - 263.7 + - 533.15 +? !!python/tuple +- 60 +- 195 +- 368 +: - - 246.8 + - 498.55 + - - 256.8 + - 498.85 +? !!python/tuple +- 61 +- 61 +- 164 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 61 +- 638 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 91 +- 166 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 61 +- 91 +- 640 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 62 +- 45 +- 26 +: - - 444.15000000000003 + - 570.75 + - - 444.25 + - 576.9 +? !!python/tuple +- 62 +- 45 +- 240 +: - - 444.15000000000003 + - 570.75 + - - 444.25 + - 576.9 +? !!python/tuple +- 62 +- 62 +- 32 +: - - 444.15000000000003 + - 570.75 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 63 +- 63 +- 76 +: - - 334.90000000000003 + - 527.1 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 63 +- 63 +- 319 +: - - 334.90000000000003 + - 527.1 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 63 +- 92 +- 71 +: - - 334.90000000000003 + - 527.1 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 63 +- 92 +- 312 +: - - 334.90000000000003 + - 527.1 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 63 +- 97 +- 72 +: - - 334.90000000000003 + - 527.1 + - - 341.35 + - 527.7 +? !!python/tuple +- 63 +- 97 +- 313 +: - - 334.90000000000003 + - 527.1 + - - 341.35 + - 527.7 +? !!python/tuple +- 64 +- 93 +- 10 +: - - 253.3 + - 602.25 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 64 +- 125 +- 209 +: - - 253.3 + - 602.25 + - - 263.0 + - 594.1 +? !!python/tuple +- 64 +- 130 +- 205 +: - - 253.3 + - 602.25 + - - 260.65000000000003 + - 604.7 +? !!python/tuple +- 65 +- 6 +- 93 +: - - 232.55 + - 490.6 + - - 218.0 + - 576.9 +? !!python/tuple +- 65 +- 60 +- 94 +: - - 232.55 + - 490.6 + - - 246.8 + - 498.55 +? !!python/tuple +- 65 +- 60 +- 378 +: - - 232.55 + - 490.6 + - - 246.8 + - 498.55 +? !!python/tuple +- 65 +- 65 +- 110 +: - - 232.55 + - 490.6 + - - 232.55 + - 490.6 +? !!python/tuple +- 65 +- 86 +- 97 +: - - 232.55 + - 490.6 + - - 258.95 + - 486.1 +? !!python/tuple +- 65 +- 216 +- 386 +: - - 232.55 + - 490.6 + - - 242.25 + - 485.15000000000003 +? !!python/tuple +- 66 +- 66 +- 99 +: - - 427.90000000000003 + - 458.8 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 66 +- 217 +- 407 +: - - 427.90000000000003 + - 458.8 + - - 427.0 + - 469.35 +? !!python/tuple +- 66 +- 226 +- 408 +: - - 427.90000000000003 + - 458.8 + - - 438.45000000000005 + - 459.65000000000003 +? !!python/tuple +- 67 +- 51 +- 167 +: - - 315.75 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 67 +- 407 +- 642 +: - - 315.75 + - 172.85000000000002 + - - 325.90000000000003 + - 172.85000000000002 +? !!python/tuple +- 68 +- 35 +- 52 +: - - 430.70000000000005 + - 537.3000000000001 + - - 429.8 + - 540.35 +? !!python/tuple +- 68 +- 35 +- 283 +: - - 430.70000000000005 + - 537.3000000000001 + - - 429.8 + - 540.35 +? !!python/tuple +- 68 +- 50 +- 54 +: - - 430.70000000000005 + - 537.3000000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 68 +- 50 +- 285 +: - - 430.70000000000005 + - 537.3000000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 69 +- 41 +- 171 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.0 + - 170.75 +? !!python/tuple +- 69 +- 71 +- 174 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 69 +- 416 +- 650 +: - - 260.65000000000003 + - 169.20000000000002 + - - 271.15000000000003 + - 170.0 +? !!python/tuple +- 69 +- 421 +- 657 +: - - 260.65000000000003 + - 169.20000000000002 + - - 265.45 + - 155.05 +? !!python/tuple +- 70 +- 98 +- 160 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 161 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 392 +- 626 +: - - 415.25 + - 187.35000000000002 + - - 424.8 + - 188.35000000000002 +? !!python/tuple +- 71 +- 51 +- 173 +: - - 283.45 + - 159.8 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 71 +- 417 +- 655 +: - - 283.45 + - 159.8 + - - 293.1 + - 160.85000000000002 +? !!python/tuple +- 72 +- 85 +- 91 +: - - 358.45000000000005 + - 495.6 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 72 +- 199 +- 373 +: - - 358.45000000000005 + - 495.6 + - - 368.95000000000005 + - 496.55 +? !!python/tuple +- 73 +- 22 +- 46 +: - - 427.3 + - 540.75 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 73 +- 22 +- 276 +: - - 427.3 + - 540.75 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 73 +- 35 +- 48 +: - - 427.3 + - 540.75 + - - 429.8 + - 540.35 +? !!python/tuple +- 73 +- 35 +- 278 +: - - 427.3 + - 540.75 + - - 429.8 + - 540.35 +? !!python/tuple +- 74 +- 7 +- 60 +: - - 350.15000000000003 + - 533.2 + - - 345.3 + - 568.1 +? !!python/tuple +- 74 +- 43 +- 62 +: - - 350.15000000000003 + - 533.2 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 74 +- 43 +- 298 +: - - 350.15000000000003 + - 533.2 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 74 +- 149 +- 294 +: - - 350.15000000000003 + - 533.2 + - - 349.3 + - 543.7 +? !!python/tuple +- 75 +- 53 +- 77 +: - - 434.6 + - 519.35 + - - 442.35 + - 535.35 +? !!python/tuple +- 75 +- 53 +- 325 +: - - 434.6 + - 519.35 + - - 442.35 + - 535.35 +? !!python/tuple +- 76 +- 10 +- 89 +: - - 345.05 + - 498.20000000000005 + - - 347.75 + - 500.90000000000003 +? !!python/tuple +- 76 +- 10 +- 366 +: - - 345.05 + - 498.20000000000005 + - - 347.75 + - 500.90000000000003 +? !!python/tuple +- 76 +- 84 +- 82 +: - - 345.05 + - 498.20000000000005 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 76 +- 194 +- 365 +: - - 345.05 + - 498.20000000000005 + - - 343.85 + - 511.6 +? !!python/tuple +- 77 +- 1 +- 111 +: - - 227.5 + - 441.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 77 +- 253 +- 437 +: - - 227.5 + - 441.15000000000003 + - - 226.10000000000002 + - 451.6 +? !!python/tuple +- 77 +- 257 +- 438 +: - - 227.5 + - 441.15000000000003 + - - 238.0 + - 441.90000000000003 +? !!python/tuple +- 78 +- 18 +- 144 +: - - 242.60000000000002 + - 325.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 78 +- 78 +- 143 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 78 +- 551 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 339 +- 552 +: - - 242.60000000000002 + - 325.3 + - - 253.10000000000002 + - 326.05 +? !!python/tuple +- 79 +- 20 +- 158 +: - - 257.90000000000003 + - 208.75 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 79 +- 69 +- 170 +: - - 257.90000000000003 + - 208.75 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 79 +- 381 +- 607 +: - - 257.90000000000003 + - 208.75 + - - 268.40000000000003 + - 209.25 +? !!python/tuple +- 79 +- 415 +- 613 +: - - 257.90000000000003 + - 208.75 + - - 257.95 + - 199.65 +? !!python/tuple +- 80 +- 36 +- 57 +: - - 416.95000000000005 + - 536.1 + - - 418.45000000000005 + - 539.7 +? !!python/tuple +- 80 +- 36 +- 288 +: - - 416.95000000000005 + - 536.1 + - - 418.45000000000005 + - 539.7 +? !!python/tuple +- 80 +- 95 +- 56 +: - - 416.95000000000005 + - 536.1 + - - 416.0 + - 539.15 +? !!python/tuple +- 80 +- 95 +- 287 +: - - 416.95000000000005 + - 536.1 + - - 416.0 + - 539.15 +? !!python/tuple +- 81 +- 81 +- 70 +: - - 342.35 + - 567.25 + - - 342.35 + - 567.25 +? !!python/tuple +- 82 +- 68 +- 55 +: - - 427.35 + - 537.4 + - - 430.70000000000005 + - 537.3000000000001 +? !!python/tuple +- 82 +- 68 +- 286 +: - - 427.35 + - 537.4 + - - 430.70000000000005 + - 537.3000000000001 +? !!python/tuple +- 82 +- 73 +- 51 +: - - 427.35 + - 537.4 + - - 427.3 + - 540.75 +? !!python/tuple +- 82 +- 73 +- 282 +: - - 427.35 + - 537.4 + - - 427.3 + - 540.75 +? !!python/tuple +- 83 +- 43 +- 69 +: - - 350.25 + - 530.6 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 83 +- 43 +- 309 +: - - 350.25 + - 530.6 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 83 +- 74 +- 67 +: - - 350.25 + - 530.6 + - - 350.15000000000003 + - 533.2 +? !!python/tuple +- 83 +- 74 +- 307 +: - - 350.25 + - 530.6 + - - 350.15000000000003 + - 533.2 +? !!python/tuple +- 84 +- 9 +- 78 +: - - 347.90000000000003 + - 518.8000000000001 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 84 +- 9 +- 327 +: - - 347.90000000000003 + - 518.8000000000001 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 84 +- 75 +- 79 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 75 +- 80 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 84 +- 88 +: - - 347.90000000000003 + - 518.8000000000001 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 85 +- 222 +- 367 +: - - 391.45000000000005 + - 497.90000000000003 + - - 405.6 + - 499.70000000000005 +? !!python/tuple +- 86 +- 39 +- 96 +: - - 258.95 + - 486.1 + - - 291.85 + - 489.0 +? !!python/tuple +- 86 +- 214 +- 385 +: - - 258.95 + - 486.1 + - - 269.45 + - 487.70000000000005 +? !!python/tuple +- 87 +- 32 +- 125 +: - - 230.9 + - 400.35 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 87 +- 77 +- 124 +: - - 230.9 + - 400.35 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 87 +- 289 +- 484 +: - - 230.9 + - 400.35 + - - 229.65 + - 410.85 +? !!python/tuple +- 87 +- 292 +- 486 +: - - 230.9 + - 400.35 + - - 241.45000000000002 + - 401.05 +? !!python/tuple +- 88 +- 16 +- 134 +: - - 271.1 + - 357.25 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 88 +- 32 +- 133 +: - - 271.1 + - 357.25 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 88 +- 312 +- 526 +: - - 271.1 + - 357.25 + - - 269.25 + - 367.70000000000005 +? !!python/tuple +- 88 +- 315 +- 527 +: - - 271.1 + - 357.25 + - - 281.6 + - 358.45000000000005 +? !!python/tuple +- 89 +- 19 +- 152 +: - - 248.75 + - 247.10000000000002 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 89 +- 79 +- 157 +: - - 248.75 + - 247.10000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 89 +- 99 +- 151 +: - - 248.75 + - 247.10000000000002 + - - 241.25 + - 286.2 +? !!python/tuple +- 89 +- 364 +- 581 +: - - 248.75 + - 247.10000000000002 + - - 245.4 + - 257.55 +? !!python/tuple +- 89 +- 367 +- 582 +: - - 248.75 + - 247.10000000000002 + - - 259.3 + - 248.2 +? !!python/tuple +- 89 +- 380 +- 584 +: - - 248.75 + - 247.10000000000002 + - - 250.45 + - 239.20000000000002 +? !!python/tuple +- 90 +- 386 +- 593 +: - - 380.5 + - 214.0 + - - 391.05 + - 214.85000000000002 +? !!python/tuple +- 90 +- 401 +- 615 +: - - 380.5 + - 214.0 + - - 381.20000000000005 + - 197.9 +? !!python/tuple +- 91 +- 70 +- 163 +: - - 349.35 + - 174.45000000000002 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 91 +- 397 +- 637 +: - - 349.35 + - 174.45000000000002 + - - 359.5 + - 175.3 +? !!python/tuple +- 92 +- 81 +- 34 +: - - 330.90000000000003 + - 567.0500000000001 + - - 342.35 + - 567.25 +? !!python/tuple +- 92 +- 81 +- 248 +: - - 330.90000000000003 + - 567.0500000000001 + - - 342.35 + - 567.25 +? !!python/tuple +- 92 +- 92 +- 33 +: - - 330.90000000000003 + - 567.0500000000001 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 92 +- 92 +- 247 +: - - 330.90000000000003 + - 567.0500000000001 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 93 +- 4 +- 2 +: - - 316.95000000000005 + - 618.75 + - - 340.05 + - 622.0 +? !!python/tuple +- 93 +- 93 +- 3 +: - - 316.95000000000005 + - 618.75 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 93 +- 100 +- 195 +: - - 316.95000000000005 + - 618.75 + - - 327.40000000000003 + - 621.5 +? !!python/tuple +- 94 +- 22 +- 50 +: - - 408.45000000000005 + - 546.5 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 94 +- 22 +- 280 +: - - 408.45000000000005 + - 546.5 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 94 +- 46 +- 43 +: - - 408.45000000000005 + - 546.5 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 94 +- 147 +- 266 +: - - 408.45000000000005 + - 546.5 + - - 407.45000000000005 + - 557.0 +? !!python/tuple +- 95 +- 95 +- 49 +: - - 416.0 + - 539.15 + - - 416.0 + - 539.15 +? !!python/tuple +- 95 +- 95 +- 279 +: - - 416.0 + - 539.15 + - - 416.0 + - 539.15 +? !!python/tuple +- 96 +- 44 +- 81 +: - - 263.7 + - 533.15 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 96 +- 185 +- 297 +: - - 263.7 + - 533.15 + - - 280.35 + - 535.15 +? !!python/tuple +- 97 +- 9 +- 74 +: - - 341.35 + - 527.7 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 97 +- 9 +- 315 +: - - 341.35 + - 527.7 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 97 +- 164 +- 311 +: - - 341.35 + - 527.7 + - - 338.6 + - 537.6 +? !!python/tuple +- 98 +- 98 +- 159 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 98 +- 98 +- 619 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 99 +- 29 +- 148 +: - - 241.25 + - 286.2 + - - 276.2 + - 288.8 +? !!python/tuple +- 99 +- 87 +- 147 +: - - 241.25 + - 286.2 + - - 230.9 + - 400.35 +? !!python/tuple +- 99 +- 347 +- 566 +: - - 241.25 + - 286.2 + - - 239.70000000000002 + - 296.65000000000003 +? !!python/tuple +- 99 +- 356 +- 567 +: - - 241.25 + - 286.2 + - - 251.7 + - 286.90000000000003 +? !!python/tuple +- 100 +- 4 +- 191 +: - - 327.40000000000003 + - 621.5 + - - 340.05 + - 622.0 +? !!python/tuple +- 101 +- 102 +- 204 +: - - 312.55 + - 602.4 + - - 318.15000000000003 + - 611.2 +? !!python/tuple +- 102 +- 93 +- 199 +: - - 318.15000000000003 + - 611.2 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 103 +- 103 +- 210 +: - - 446.05 + - 595.9 + - - 446.05 + - 595.9 +? !!python/tuple +- 104 +- 64 +- 206 +: - - 243.8 + - 601.65 + - - 253.3 + - 602.25 +? !!python/tuple +- 104 +- 104 +- 211 +: - - 243.8 + - 601.65 + - - 243.8 + - 601.65 +? !!python/tuple +- 105 +- 106 +- 203 +: - - 234.05 + - 602.45 + - - 233.10000000000002 + - 612.45 +? !!python/tuple +- 106 +- 107 +- 198 +: - - 233.10000000000002 + - 612.45 + - - 237.45000000000002 + - 619.3000000000001 +? !!python/tuple +- 107 +- 108 +- 194 +: - - 237.45000000000002 + - 619.3000000000001 + - - 247.45 + - 620.2 +? !!python/tuple +- 108 +- 109 +- 193 +: - - 247.45 + - 620.2 + - - 257.45 + - 621.1500000000001 +? !!python/tuple +- 109 +- 110 +- 192 +: - - 257.45 + - 621.1500000000001 + - - 267.45 + - 622.1 +? !!python/tuple +- 110 +- 111 +- 190 +: - - 267.45 + - 622.1 + - - 277.45 + - 623.0500000000001 +? !!python/tuple +- 111 +- 112 +- 187 +: - - 277.45 + - 623.0500000000001 + - - 287.45 + - 624.0 +? !!python/tuple +- 112 +- 113 +- 185 +: - - 287.45 + - 624.0 + - - 292.25 + - 629.9000000000001 +? !!python/tuple +- 113 +- 114 +- 179 +: - - 292.25 + - 629.9000000000001 + - - 302.25 + - 631.0 +? !!python/tuple +- 114 +- 115 +- 178 +: - - 302.25 + - 631.0 + - - 312.25 + - 632.0500000000001 +? !!python/tuple +- 115 +- 116 +- 177 +: - - 312.25 + - 632.0500000000001 + - - 322.25 + - 633.1 +? !!python/tuple +- 116 +- 117 +- 176 +: - - 322.25 + - 633.1 + - - 332.25 + - 634.1 +? !!python/tuple +- 117 +- 118 +- 175 +: - - 332.25 + - 634.1 + - - 340.90000000000003 + - 633.1500000000001 +? !!python/tuple +- 119 +- 118 +- 189 +: - - 351.6 + - 622.4000000000001 + - - 340.90000000000003 + - 633.1500000000001 +? !!python/tuple +- 119 +- 120 +- 188 +: - - 351.6 + - 622.4000000000001 + - - 361.6 + - 623.3000000000001 +? !!python/tuple +- 120 +- 121 +- 186 +: - - 361.6 + - 623.3000000000001 + - - 368.1 + - 627.85 +? !!python/tuple +- 121 +- 121 +- 181 +: - - 368.1 + - 627.85 + - - 368.1 + - 627.85 +? !!python/tuple +- 122 +- 123 +- 184 +: - - 382.5 + - 624.8000000000001 + - - 392.5 + - 625.6500000000001 +? !!python/tuple +- 123 +- 3 +- 182 +: - - 392.5 + - 625.6500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 124 +- 126 +- 218 +: - - 273.0 + - 586.9 + - - 283.0 + - 587.65 +? !!python/tuple +- 125 +- 124 +- 217 +: - - 263.0 + - 594.1 + - - 273.0 + - 586.9 +? !!python/tuple +- 126 +- 127 +- 216 +: - - 283.0 + - 587.65 + - - 285.90000000000003 + - 597.25 +? !!python/tuple +- 127 +- 128 +- 208 +: - - 285.90000000000003 + - 597.25 + - - 287.85 + - 607.25 +? !!python/tuple +- 129 +- 131 +- 201 +: - - 270.65000000000003 + - 606.95 + - - 296.85 + - 613.45 +? !!python/tuple +- 130 +- 129 +- 202 +: - - 260.65000000000003 + - 604.7 + - - 270.65000000000003 + - 606.95 +? !!python/tuple +- 131 +- 132 +- 197 +: - - 296.85 + - 613.45 + - - 306.85 + - 616.45 +? !!python/tuple +- 132 +- 93 +- 196 +: - - 306.85 + - 616.45 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 133 +- 6 +- 228 +: - - 207.55 + - 580.4 + - - 218.0 + - 576.9 +? !!python/tuple +- 134 +- 133 +- 222 +: - - 197.55 + - 579.4 + - - 207.55 + - 580.4 +? !!python/tuple +- 135 +- 134 +- 225 +: - - 187.55 + - 578.4 + - - 197.55 + - 579.4 +? !!python/tuple +- 135 +- 135 +- 226 +: - - 187.55 + - 578.4 + - - 187.55 + - 578.4 +? !!python/tuple +- 136 +- 62 +- 243 +: - - 433.25 + - 569.6 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 137 +- 137 +- 242 +: - - 368.95000000000005 + - 570.4 + - - 368.95000000000005 + - 570.4 +? !!python/tuple +- 138 +- 57 +- 238 +: - - 383.45000000000005 + - 571.75 + - - 391.3 + - 573.1 +? !!python/tuple +- 139 +- 140 +- 223 +: - - 344.55 + - 578.65 + - - 343.6 + - 588.65 +? !!python/tuple +- 140 +- 141 +- 215 +: - - 343.6 + - 588.65 + - - 342.65000000000003 + - 598.65 +? !!python/tuple +- 141 +- 142 +- 207 +: - - 342.65000000000003 + - 598.65 + - - 341.70000000000005 + - 608.6500000000001 +? !!python/tuple +- 142 +- 4 +- 200 +: - - 341.70000000000005 + - 608.6500000000001 + - - 340.05 + - 622.0 +? !!python/tuple +- 143 +- 143 +- 249 +: - - 472.5 + - 567.75 + - - 472.5 + - 567.75 +? !!python/tuple +- 144 +- 144 +- 256 +: - - 473.70000000000005 + - 553.2 + - - 473.70000000000005 + - 553.2 +? !!python/tuple +- 144 +- 144 +- 261 +: - - 473.70000000000005 + - 553.2 + - - 473.70000000000005 + - 553.2 +? !!python/tuple +- 145 +- 145 +- 259 +: - - 455.75 + - 550.4 + - - 455.75 + - 550.4 +? !!python/tuple +- 146 +- 62 +- 254 +: - - 445.75 + - 556.65 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 147 +- 46 +- 253 +: - - 407.45000000000005 + - 557.0 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 148 +- 148 +- 265 +: - - 473.85 + - 543.65 + - - 473.85 + - 543.65 +? !!python/tuple +- 148 +- 148 +- 271 +: - - 473.85 + - 543.65 + - - 473.85 + - 543.65 +? !!python/tuple +- 149 +- 150 +- 270 +: - - 349.3 + - 543.7 + - - 348.35 + - 553.7 +? !!python/tuple +- 150 +- 7 +- 255 +: - - 348.35 + - 553.7 + - - 345.3 + - 568.1 +? !!python/tuple +- 151 +- 152 +- 273 +: - - 370.6 + - 542.4 + - - 380.6 + - 543.35 +? !!python/tuple +- 152 +- 153 +- 272 +: - - 380.6 + - 543.35 + - - 390.6 + - 544.3000000000001 +? !!python/tuple +- 153 +- 154 +- 269 +: - - 390.6 + - 544.3000000000001 + - - 400.6 + - 545.2 +? !!python/tuple +- 154 +- 94 +- 268 +: - - 400.6 + - 545.2 + - - 408.45000000000005 + - 546.5 +? !!python/tuple +- 155 +- 156 +- 274 +: - - 239.4 + - 541.0 + - - 238.4 + - 551.0 +? !!python/tuple +- 156 +- 157 +- 257 +: - - 238.4 + - 551.0 + - - 237.45000000000002 + - 561.0 +? !!python/tuple +- 157 +- 158 +- 250 +: - - 237.45000000000002 + - 561.0 + - - 236.45000000000002 + - 571.0 +? !!python/tuple +- 158 +- 21 +- 239 +: - - 236.45000000000002 + - 571.0 + - - 235.15 + - 578.5 +? !!python/tuple +- 159 +- 160 +- 299 +: - - 377.5 + - 532.65 + - - 387.5 + - 533.5 +? !!python/tuple +- 160 +- 161 +- 295 +: - - 387.5 + - 533.5 + - - 397.5 + - 534.35 +? !!python/tuple +- 161 +- 162 +- 293 +: - - 397.5 + - 534.35 + - - 407.5 + - 535.2 +? !!python/tuple +- 162 +- 80 +- 292 +: - - 407.5 + - 535.2 + - - 416.95000000000005 + - 536.1 +? !!python/tuple +- 163 +- 96 +- 300 +: - - 254.05 + - 532.65 + - - 263.7 + - 533.15 +? !!python/tuple +- 164 +- 165 +- 281 +: - - 338.6 + - 537.6 + - - 337.90000000000003 + - 547.6 +? !!python/tuple +- 165 +- 166 +- 264 +: - - 337.90000000000003 + - 547.6 + - - 337.55 + - 557.6 +? !!python/tuple +- 166 +- 81 +- 252 +: - - 337.55 + - 557.6 + - - 342.35 + - 567.25 +? !!python/tuple +- 167 +- 168 +- 332 +: - - 359.05 + - 516.1 + - - 366.65000000000003 + - 519.45 +? !!python/tuple +- 167 +- 174 +- 333 +: - - 359.05 + - 516.1 + - - 426.65000000000003 + - 524.7 +? !!python/tuple +- 168 +- 169 +- 326 +: - - 366.65000000000003 + - 519.45 + - - 376.65000000000003 + - 520.35 +? !!python/tuple +- 169 +- 170 +- 324 +: - - 376.65000000000003 + - 520.35 + - - 386.65000000000003 + - 521.25 +? !!python/tuple +- 170 +- 171 +- 322 +: - - 386.65000000000003 + - 521.25 + - - 396.65000000000003 + - 522.2 +? !!python/tuple +- 171 +- 172 +- 320 +: - - 396.65000000000003 + - 522.2 + - - 406.65000000000003 + - 523.1 +? !!python/tuple +- 172 +- 173 +- 318 +: - - 406.65000000000003 + - 523.1 + - - 416.65000000000003 + - 524.0 +? !!python/tuple +- 173 +- 174 +- 317 +: - - 416.65000000000003 + - 524.0 + - - 426.65000000000003 + - 524.7 +? !!python/tuple +- 175 +- 84 +- 342 +: - - 352.70000000000005 + - 509.9 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 175 +- 176 +- 343 +: - - 352.70000000000005 + - 509.9 + - - 364.90000000000003 + - 511.20000000000005 +? !!python/tuple +- 176 +- 177 +- 340 +: - - 364.90000000000003 + - 511.20000000000005 + - - 374.90000000000003 + - 512.35 +? !!python/tuple +- 177 +- 178 +- 337 +: - - 374.90000000000003 + - 512.35 + - - 384.90000000000003 + - 513.5 +? !!python/tuple +- 178 +- 179 +- 336 +: - - 384.90000000000003 + - 513.5 + - - 394.90000000000003 + - 514.65 +? !!python/tuple +- 179 +- 180 +- 335 +: - - 394.90000000000003 + - 514.65 + - - 404.90000000000003 + - 515.8000000000001 +? !!python/tuple +- 180 +- 182 +- 334 +: - - 404.90000000000003 + - 515.8000000000001 + - - 413.40000000000003 + - 516.75 +? !!python/tuple +- 181 +- 75 +- 330 +: - - 423.40000000000003 + - 517.9 + - - 434.6 + - 519.35 +? !!python/tuple +- 182 +- 181 +- 331 +: - - 413.40000000000003 + - 516.75 + - - 423.40000000000003 + - 517.9 +? !!python/tuple +- 183 +- 184 +- 328 +: - - 285.35 + - 518.3000000000001 + - - 284.45 + - 528.3000000000001 +? !!python/tuple +- 185 +- 186 +- 310 +: - - 280.35 + - 535.15 + - - 288.05 + - 536.0 +? !!python/tuple +- 186 +- 187 +- 289 +: - - 288.05 + - 536.0 + - - 298.05 + - 536.85 +? !!python/tuple +- 187 +- 187 +- 302 +: - - 298.05 + - 536.85 + - - 298.05 + - 536.85 +? !!python/tuple +- 188 +- 189 +- 346 +: - - 338.8 + - 505.55000000000007 + - - 336.85 + - 515.5 +? !!python/tuple +- 188 +- 189 +- 347 +: - - 338.8 + - 505.55000000000007 + - - 336.85 + - 515.5 +? !!python/tuple +- 190 +- 191 +- 354 +: - - 297.20000000000005 + - 502.80000000000007 + - - 307.20000000000005 + - 503.75 +? !!python/tuple +- 191 +- 191 +- 352 +: - - 307.20000000000005 + - 503.75 + - - 307.20000000000005 + - 503.75 +? !!python/tuple +- 192 +- 193 +- 351 +: - - 319.6 + - 504.20000000000005 + - - 329.6 + - 504.9 +? !!python/tuple +- 193 +- 193 +- 349 +: - - 329.6 + - 504.9 + - - 329.6 + - 504.9 +? !!python/tuple +- 194 +- 84 +- 338 +: - - 343.85 + - 511.6 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 195 +- 196 +- 364 +: - - 256.8 + - 498.85 + - - 266.8 + - 500.40000000000003 +? !!python/tuple +- 196 +- 48 +- 359 +: - - 266.8 + - 500.40000000000003 + - - 276.85 + - 501.45000000000005 +? !!python/tuple +- 196 +- 197 +- 358 +: - - 266.8 + - 500.40000000000003 + - - 265.85 + - 510.35 +? !!python/tuple +- 197 +- 198 +- 341 +: - - 265.85 + - 510.35 + - - 264.85 + - 520.35 +? !!python/tuple +- 198 +- 96 +- 323 +: - - 264.85 + - 520.35 + - - 263.7 + - 533.15 +? !!python/tuple +- 199 +- 200 +- 371 +: - - 368.95000000000005 + - 496.55 + - - 378.95000000000005 + - 497.40000000000003 +? !!python/tuple +- 200 +- 85 +- 369 +: - - 378.95000000000005 + - 497.40000000000003 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 201 +- 38 +- 374 +: - - 335.6 + - 493.65000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 202 +- 203 +- 370 +: - - 227.0 + - 500.05 + - - 222.4 + - 510.9 +? !!python/tuple +- 202 +- 209 +- 377 +: - - 227.0 + - 500.05 + - - 236.0 + - 506.15 +? !!python/tuple +- 203 +- 204 +- 339 +: - - 222.4 + - 510.9 + - - 221.4 + - 520.9 +? !!python/tuple +- 204 +- 37 +- 321 +: - - 221.4 + - 520.9 + - - 235.8 + - 532.1 +? !!python/tuple +- 205 +- 206 +- 305 +: - - 221.20000000000002 + - 530.9 + - - 219.45000000000002 + - 540.9 +? !!python/tuple +- 206 +- 207 +- 275 +: - - 219.45000000000002 + - 540.9 + - - 218.45000000000002 + - 550.9 +? !!python/tuple +- 207 +- 208 +- 258 +: - - 218.45000000000002 + - 550.9 + - - 217.5 + - 560.9 +? !!python/tuple +- 209 +- 60 +- 362 +: - - 236.0 + - 506.15 + - - 246.8 + - 498.55 +? !!python/tuple +- 210 +- 211 +- 345 +: - - 245.70000000000002 + - 507.75 + - - 244.9 + - 517.75 +? !!python/tuple +- 211 +- 25 +- 329 +: - - 244.9 + - 517.75 + - - 243.55 + - 531.15 +? !!python/tuple +- 212 +- 213 +- 379 +: - - 302.3 + - 490.6 + - - 312.3 + - 491.5 +? !!python/tuple +- 213 +- 26 +- 376 +: - - 312.3 + - 491.5 + - - 325.1 + - 492.05 +? !!python/tuple +- 214 +- 215 +- 383 +: - - 269.45 + - 487.70000000000005 + - - 279.45 + - 488.6 +? !!python/tuple +- 215 +- 39 +- 382 +: - - 279.45 + - 488.6 + - - 291.85 + - 489.0 +? !!python/tuple +- 216 +- 86 +- 387 +: - - 242.25 + - 485.15000000000003 + - - 258.95 + - 486.1 +? !!python/tuple +- 217 +- 218 +- 398 +: - - 427.0 + - 469.35 + - - 426.20000000000005 + - 479.35 +? !!python/tuple +- 218 +- 219 +- 391 +: - - 426.20000000000005 + - 479.35 + - - 425.35 + - 489.35 +? !!python/tuple +- 219 +- 220 +- 380 +: - - 425.35 + - 489.35 + - - 424.55 + - 499.35 +? !!python/tuple +- 221 +- 223 +- 360 +: - - 415.6 + - 500.5 + - - 436.85 + - 504.75 +? !!python/tuple +- 222 +- 221 +- 361 +: - - 405.6 + - 499.70000000000005 + - - 415.6 + - 500.5 +? !!python/tuple +- 224 +- 223 +- 348 +: - - 429.40000000000003 + - 507.35 + - - 436.85 + - 504.75 +? !!python/tuple +- 225 +- 224 +- 350 +: - - 399.40000000000003 + - 504.5 + - - 429.40000000000003 + - 507.35 +? !!python/tuple +- 226 +- 227 +- 406 +: - - 438.45000000000005 + - 459.65000000000003 + - - 448.45000000000005 + - 460.20000000000005 +? !!python/tuple +- 227 +- 227 +- 405 +: - - 448.45000000000005 + - 460.20000000000005 + - - 448.45000000000005 + - 460.20000000000005 +? !!python/tuple +- 228 +- 229 +- 400 +: - - 394.0 + - 466.65000000000003 + - - 393.20000000000005 + - 476.65000000000003 +? !!python/tuple +- 229 +- 230 +- 393 +: - - 393.20000000000005 + - 476.65000000000003 + - - 392.40000000000003 + - 486.65000000000003 +? !!python/tuple +- 230 +- 85 +- 384 +: - - 392.40000000000003 + - 486.65000000000003 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 231 +- 232 +- 411 +: - - 405.35 + - 456.95000000000005 + - - 415.35 + - 457.75 +? !!python/tuple +- 232 +- 66 +- 410 +: - - 415.35 + - 457.75 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 233 +- 234 +- 402 +: - - 360.90000000000003 + - 464.0 + - - 360.1 + - 474.0 +? !!python/tuple +- 234 +- 235 +- 395 +: - - 360.1 + - 474.0 + - - 359.25 + - 484.0 +? !!python/tuple +- 235 +- 72 +- 388 +: - - 359.25 + - 484.0 + - - 358.45000000000005 + - 495.6 +? !!python/tuple +- 236 +- 237 +- 416 +: - - 372.35 + - 454.3 + - - 382.35 + - 455.1 +? !!python/tuple +- 237 +- 0 +- 415 +: - - 382.35 + - 455.1 + - - 394.8 + - 456.1 +? !!python/tuple +- 238 +- 239 +- 404 +: - - 327.90000000000003 + - 461.1 + - - 327.0 + - 471.1 +? !!python/tuple +- 239 +- 240 +- 397 +: - - 327.0 + - 471.1 + - - 326.20000000000005 + - 481.1 +? !!python/tuple +- 240 +- 26 +- 390 +: - - 326.20000000000005 + - 481.1 + - - 325.1 + - 492.05 +? !!python/tuple +- 241 +- 242 +- 421 +: - - 339.40000000000003 + - 451.55 + - - 349.40000000000003 + - 452.40000000000003 +? !!python/tuple +- 242 +- 40 +- 419 +: - - 349.40000000000003 + - 452.40000000000003 + - - 362.0938415527344 + - 453.5181579589844 +? !!python/tuple +- 243 +- 244 +- 409 +: - - 294.90000000000003 + - 457.95000000000005 + - - 293.95 + - 467.95000000000005 +? !!python/tuple +- 244 +- 245 +- 399 +: - - 293.95 + - 467.95000000000005 + - - 293.0 + - 477.95000000000005 +? !!python/tuple +- 245 +- 39 +- 392 +: - - 293.0 + - 477.95000000000005 + - - 291.85 + - 489.0 +? !!python/tuple +- 246 +- 247 +- 426 +: - - 306.25 + - 448.45000000000005 + - - 316.25 + - 449.45000000000005 +? !!python/tuple +- 247 +- 11 +- 424 +: - - 316.25 + - 449.45000000000005 + - - 328.85 + - 450.6 +? !!python/tuple +- 248 +- 249 +- 414 +: - - 261.85 + - 454.85 + - - 260.95 + - 464.85 +? !!python/tuple +- 249 +- 250 +- 401 +: - - 260.95 + - 464.85 + - - 260.1 + - 474.85 +? !!python/tuple +- 250 +- 86 +- 394 +: - - 260.1 + - 474.85 + - - 258.95 + - 486.1 +? !!python/tuple +- 251 +- 252 +- 431 +: - - 273.35 + - 445.25 + - - 283.35 + - 446.25 +? !!python/tuple +- 252 +- 28 +- 429 +: - - 283.35 + - 446.25 + - - 295.8104248046875 + - 447.5629577636719 +? !!python/tuple +- 253 +- 254 +- 420 +: - - 226.10000000000002 + - 451.6 + - - 225.20000000000002 + - 461.6 +? !!python/tuple +- 254 +- 255 +- 403 +: - - 225.20000000000002 + - 461.6 + - - 224.25 + - 471.6 +? !!python/tuple +- 255 +- 256 +- 396 +: - - 224.25 + - 471.6 + - - 224.20000000000002 + - 481.6 +? !!python/tuple +- 256 +- 65 +- 389 +: - - 224.20000000000002 + - 481.6 + - - 232.55 + - 490.6 +? !!python/tuple +- 257 +- 258 +- 436 +: - - 238.0 + - 441.90000000000003 + - - 248.0 + - 442.90000000000003 +? !!python/tuple +- 258 +- 1 +- 435 +: - - 248.0 + - 442.90000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 259 +- 12 +- 456 +: - - 430.3 + - 428.1 + - - 431.1 + - 417.6 +? !!python/tuple +- 259 +- 260 +- 447 +: - - 430.3 + - 428.1 + - - 429.55 + - 438.1 +? !!python/tuple +- 260 +- 261 +- 440 +: - - 429.55 + - 438.1 + - - 428.75 + - 448.1 +? !!python/tuple +- 261 +- 66 +- 425 +: - - 428.75 + - 448.1 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 262 +- 263 +- 454 +: - - 441.55 + - 418.5 + - - 451.55 + - 419.25 +? !!python/tuple +- 263 +- 263 +- 455 +: - - 451.55 + - 419.25 + - - 451.55 + - 419.25 +? !!python/tuple +- 264 +- 265 +- 449 +: - - 397.35 + - 425.5 + - - 396.5 + - 435.5 +? !!python/tuple +- 265 +- 266 +- 442 +: - - 396.5 + - 435.5 + - - 395.70000000000005 + - 445.5 +? !!python/tuple +- 266 +- 0 +- 430 +: - - 395.70000000000005 + - 445.5 + - - 394.8 + - 456.1 +? !!python/tuple +- 267 +- 268 +- 460 +: - - 408.75 + - 415.90000000000003 + - - 418.75 + - 416.65000000000003 +? !!python/tuple +- 268 +- 12 +- 459 +: - - 418.75 + - 416.65000000000003 + - - 431.1 + - 417.6 +? !!python/tuple +- 269 +- 270 +- 451 +: - - 364.3 + - 422.90000000000003 + - - 363.5 + - 432.90000000000003 +? !!python/tuple +- 270 +- 271 +- 444 +: - - 363.5 + - 432.90000000000003 + - - 362.65000000000003 + - 442.90000000000003 +? !!python/tuple +- 271 +- 40 +- 434 +: - - 362.65000000000003 + - 442.90000000000003 + - - 362.0938415527344 + - 453.5181579589844 +? !!python/tuple +- 272 +- 273 +- 465 +: - - 375.6 + - 413.20000000000005 + - - 385.6 + - 414.0 +? !!python/tuple +- 273 +- 13 +- 464 +: - - 385.6 + - 414.0 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 274 +- 275 +- 453 +: - - 331.75 + - 420.1 + - - 330.8 + - 430.1 +? !!python/tuple +- 275 +- 276 +- 446 +: - - 330.8 + - 430.1 + - - 329.8 + - 440.1 +? !!python/tuple +- 276 +- 11 +- 439 +: - - 329.8 + - 440.1 + - - 328.85 + - 450.6 +? !!python/tuple +- 277 +- 278 +- 470 +: - - 343.3 + - 410.5 + - - 353.3 + - 411.35 +? !!python/tuple +- 278 +- 14 +- 468 +: - - 353.3 + - 411.35 + - - 365.1 + - 412.35 +? !!python/tuple +- 279 +- 280 +- 458 +: - - 298.75 + - 416.70000000000005 + - - 297.8 + - 426.70000000000005 +? !!python/tuple +- 280 +- 281 +- 448 +: - - 297.8 + - 426.70000000000005 + - - 296.85 + - 436.70000000000005 +? !!python/tuple +- 281 +- 28 +- 441 +: - - 296.85 + - 436.70000000000005 + - - 295.8104248046875 + - 447.5629577636719 +? !!python/tuple +- 282 +- 283 +- 474 +: - - 310.40000000000003 + - 407.35 + - - 320.40000000000003 + - 408.3 +? !!python/tuple +- 283 +- 30 +- 473 +: - - 320.40000000000003 + - 408.3 + - - 332.75 + - 409.55 +? !!python/tuple +- 284 +- 285 +- 463 +: - - 265.40000000000003 + - 413.65000000000003 + - - 264.55 + - 423.65000000000003 +? !!python/tuple +- 285 +- 286 +- 450 +: - - 264.55 + - 423.65000000000003 + - - 263.7 + - 433.65000000000003 +? !!python/tuple +- 286 +- 1 +- 443 +: - - 263.7 + - 433.65000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 287 +- 288 +- 479 +: - - 276.65000000000003 + - 404.05 + - - 286.65000000000003 + - 405.0 +? !!python/tuple +- 288 +- 31 +- 478 +: - - 286.65000000000003 + - 405.0 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 289 +- 290 +- 469 +: - - 229.65 + - 410.85 + - - 228.8 + - 420.85 +? !!python/tuple +- 290 +- 291 +- 452 +: - - 228.8 + - 420.85 + - - 227.95000000000002 + - 430.85 +? !!python/tuple +- 291 +- 77 +- 445 +: - - 227.95000000000002 + - 430.85 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 292 +- 293 +- 483 +: - - 241.45000000000002 + - 401.05 + - - 251.45 + - 401.85 +? !!python/tuple +- 293 +- 32 +- 482 +: - - 251.45 + - 401.85 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 294 +- 15 +- 506 +: - - 401.05 + - 380.05 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 295 +- 294 +- 498 +: - - 400.25 + - 390.05 + - - 401.05 + - 380.05 +? !!python/tuple +- 296 +- 13 +- 485 +: - - 399.40000000000003 + - 400.05 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 296 +- 295 +- 491 +: - - 399.40000000000003 + - 400.05 + - - 400.25 + - 390.05 +? !!python/tuple +- 297 +- 298 +- 500 +: - - 368.05 + - 377.05 + - - 367.20000000000005 + - 387.05 +? !!python/tuple +- 298 +- 299 +- 493 +: - - 367.20000000000005 + - 387.05 + - - 366.40000000000003 + - 397.05 +? !!python/tuple +- 299 +- 14 +- 487 +: - - 366.40000000000003 + - 397.05 + - - 365.1 + - 412.35 +? !!python/tuple +- 300 +- 301 +- 510 +: - - 379.45000000000005 + - 367.45000000000005 + - - 389.45000000000005 + - 368.35 +? !!python/tuple +- 301 +- 15 +- 508 +: - - 389.45000000000005 + - 368.35 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 302 +- 303 +- 503 +: - - 336.35 + - 374.15000000000003 + - - 335.3 + - 384.15000000000003 +? !!python/tuple +- 303 +- 304 +- 496 +: - - 335.3 + - 384.15000000000003 + - - 334.3 + - 394.15000000000003 +? !!python/tuple +- 304 +- 30 +- 489 +: - - 334.3 + - 394.15000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 305 +- 306 +- 516 +: - - 347.8 + - 364.6 + - - 357.8 + - 365.55 +? !!python/tuple +- 306 +- 2 +- 514 +: - - 357.8 + - 365.55 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 307 +- 308 +- 504 +: - - 303.15000000000003 + - 371.05 + - - 302.15000000000003 + - 381.05 +? !!python/tuple +- 308 +- 309 +- 497 +: - - 302.15000000000003 + - 381.05 + - - 301.20000000000005 + - 391.05 +? !!python/tuple +- 309 +- 31 +- 490 +: - - 301.20000000000005 + - 391.05 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 310 +- 311 +- 521 +: - - 314.65000000000003 + - 361.55 + - - 324.65000000000003 + - 362.5 +? !!python/tuple +- 311 +- 52 +- 519 +: - - 324.65000000000003 + - 362.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 312 +- 313 +- 509 +: - - 269.25 + - 367.70000000000005 + - - 268.40000000000003 + - 377.70000000000005 +? !!python/tuple +- 313 +- 314 +- 499 +: - - 268.40000000000003 + - 377.70000000000005 + - - 267.55 + - 387.70000000000005 +? !!python/tuple +- 314 +- 32 +- 492 +: - - 267.55 + - 387.70000000000005 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 315 +- 316 +- 525 +: - - 281.6 + - 358.45000000000005 + - - 291.6 + - 359.40000000000003 +? !!python/tuple +- 316 +- 16 +- 524 +: - - 291.6 + - 359.40000000000003 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 318 +- 317 +- 536 +: - - 433.35 + - 355.05 + - - 434.3 + - 345.05 +? !!python/tuple +- 319 +- 318 +- 529 +: - - 432.40000000000003 + - 365.05 + - - 433.35 + - 355.05 +? !!python/tuple +- 319 +- 322 +- 515 +: - - 432.40000000000003 + - 365.05 + - - 434.40000000000003 + - 376.8 +? !!python/tuple +- 321 +- 320 +- 505 +: - - 418.05 + - 370.85 + - - 428.05 + - 371.70000000000005 +? !!python/tuple +- 323 +- 322 +- 501 +: - - 433.65000000000003 + - 386.8 + - - 434.40000000000003 + - 376.8 +? !!python/tuple +- 324 +- 323 +- 494 +: - - 432.85 + - 396.8 + - - 433.65000000000003 + - 386.8 +? !!python/tuple +- 325 +- 324 +- 488 +: - - 432.05 + - 406.8 + - - 432.85 + - 396.8 +? !!python/tuple +- 327 +- 326 +- 538 +: - - 403.5 + - 351.70000000000005 + - - 405.15000000000003 + - 341.85 +? !!python/tuple +- 328 +- 327 +- 531 +: - - 402.65000000000003 + - 361.70000000000005 + - - 403.5 + - 351.70000000000005 +? !!python/tuple +- 330 +- 329 +- 539 +: - - 370.35 + - 349.05 + - - 371.95000000000005 + - 339.15000000000003 +? !!python/tuple +- 331 +- 332 +- 542 +: - - 340.5 + - 336.75 + - - 339.0 + - 346.70000000000005 +? !!python/tuple +- 332 +- 52 +- 534 +: - - 339.0 + - 346.70000000000005 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 333 +- 334 +- 537 +: - - 305.85 + - 341.8 + - - 304.95000000000005 + - 351.8 +? !!python/tuple +- 334 +- 16 +- 530 +: - - 304.95000000000005 + - 351.8 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 335 +- 336 +- 540 +: - - 272.35 + - 338.55 + - - 271.55 + - 348.55 +? !!python/tuple +- 336 +- 88 +- 533 +: - - 271.55 + - 348.55 + - - 271.1 + - 357.25 +? !!python/tuple +- 337 +- 338 +- 546 +: - - 283.65000000000003 + - 328.90000000000003 + - - 293.65000000000003 + - 329.90000000000003 +? !!python/tuple +- 338 +- 17 +- 544 +: - - 293.65000000000003 + - 329.90000000000003 + - - 306.1 + - 331.3 +? !!python/tuple +- 339 +- 340 +- 550 +: - - 253.10000000000002 + - 326.05 + - - 263.1 + - 326.95000000000005 +? !!python/tuple +- 340 +- 18 +- 549 +: - - 263.1 + - 326.95000000000005 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 341 +- 342 +- 557 +: - - 275.55 + - 299.3 + - - 274.8 + - 309.3 +? !!python/tuple +- 342 +- 343 +- 555 +: - - 274.8 + - 309.3 + - - 274.05 + - 319.3 +? !!python/tuple +- 343 +- 18 +- 553 +: - - 274.05 + - 319.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 344 +- 345 +- 561 +: - - 286.7 + - 289.3 + - - 296.7 + - 289.85 +? !!python/tuple +- 345 +- 346 +- 560 +: - - 296.7 + - 289.85 + - - 306.70000000000005 + - 290.45 +? !!python/tuple +- 346 +- 346 +- 559 +: - - 306.70000000000005 + - 290.45 + - - 306.70000000000005 + - 290.45 +? !!python/tuple +- 347 +- 348 +- 558 +: - - 239.70000000000002 + - 296.65000000000003 + - - 238.60000000000002 + - 306.65000000000003 +? !!python/tuple +- 348 +- 349 +- 556 +: - - 238.60000000000002 + - 306.65000000000003 + - - 237.5 + - 316.65000000000003 +? !!python/tuple +- 349 +- 350 +- 554 +: - - 237.5 + - 316.65000000000003 + - - 235.60000000000002 + - 336.65000000000003 +? !!python/tuple +- 350 +- 351 +- 541 +: - - 235.60000000000002 + - 336.65000000000003 + - - 234.8 + - 346.65000000000003 +? !!python/tuple +- 351 +- 352 +- 535 +: - - 234.8 + - 346.65000000000003 + - - 233.95000000000002 + - 356.65000000000003 +? !!python/tuple +- 352 +- 353 +- 528 +: - - 233.95000000000002 + - 356.65000000000003 + - - 233.20000000000002 + - 366.65000000000003 +? !!python/tuple +- 353 +- 354 +- 511 +: - - 233.20000000000002 + - 366.65000000000003 + - - 232.4 + - 376.65000000000003 +? !!python/tuple +- 354 +- 355 +- 502 +: - - 232.4 + - 376.65000000000003 + - - 231.60000000000002 + - 386.65000000000003 +? !!python/tuple +- 355 +- 87 +- 495 +: - - 231.60000000000002 + - 386.65000000000003 + - - 230.9 + - 400.35 +? !!python/tuple +- 356 +- 357 +- 565 +: - - 251.7 + - 286.90000000000003 + - - 261.7 + - 287.65000000000003 +? !!python/tuple +- 357 +- 29 +- 564 +: - - 261.7 + - 287.65000000000003 + - - 276.2 + - 288.8 +? !!python/tuple +- 358 +- 19 +- 577 +: - - 278.05 + - 259.95 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 359 +- 358 +- 572 +: - - 277.45 + - 269.95 + - - 278.05 + - 259.95 +? !!python/tuple +- 360 +- 29 +- 568 +: - - 276.8 + - 279.95 + - - 276.2 + - 288.8 +? !!python/tuple +- 360 +- 359 +- 570 +: - - 276.8 + - 279.95 + - - 277.45 + - 269.95 +? !!python/tuple +- 361 +- 362 +- 576 +: - - 289.15000000000003 + - 249.90000000000003 + - - 299.15000000000003 + - 250.5 +? !!python/tuple +- 362 +- 363 +- 574 +: - - 299.15000000000003 + - 250.5 + - - 309.15000000000003 + - 251.05 +? !!python/tuple +- 363 +- 363 +- 575 +: - - 309.15000000000003 + - 251.05 + - - 309.15000000000003 + - 251.05 +? !!python/tuple +- 364 +- 365 +- 573 +: - - 245.4 + - 257.55 + - - 242.95000000000002 + - 267.55 +? !!python/tuple +- 365 +- 366 +- 571 +: - - 242.95000000000002 + - 267.55 + - - 241.45000000000002 + - 277.55 +? !!python/tuple +- 366 +- 99 +- 569 +: - - 241.45000000000002 + - 277.55 + - - 241.25 + - 286.2 +? !!python/tuple +- 367 +- 368 +- 580 +: - - 259.3 + - 248.2 + - - 269.3 + - 248.8 +? !!python/tuple +- 368 +- 19 +- 579 +: - - 269.3 + - 248.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 369 +- 370 +- 595 +: - - 357.90000000000003 + - 213.4 + - - 367.90000000000003 + - 213.85000000000002 +? !!python/tuple +- 370 +- 90 +- 594 +: - - 367.90000000000003 + - 213.85000000000002 + - - 380.5 + - 214.0 +? !!python/tuple +- 371 +- 372 +- 599 +: - - 324.35 + - 211.9 + - - 334.35 + - 212.35000000000002 +? !!python/tuple +- 372 +- 27 +- 598 +: - - 334.35 + - 212.35000000000002 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 373 +- 20 +- 602 +: - - 280.7 + - 220.55 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 374 +- 373 +- 587 +: - - 280.05 + - 230.55 + - - 280.7 + - 220.55 +? !!python/tuple +- 375 +- 374 +- 585 +: - - 279.40000000000003 + - 240.55 + - - 280.05 + - 230.55 +? !!python/tuple +- 376 +- 377 +- 603 +: - - 291.05 + - 210.35000000000002 + - - 301.05 + - 210.8 +? !!python/tuple +- 377 +- 49 +- 601 +: - - 301.05 + - 210.8 + - - 313.85 + - 211.0 +? !!python/tuple +- 378 +- 79 +- 606 +: - - 255.8 + - 219.20000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 379 +- 378 +- 588 +: - - 253.2 + - 229.20000000000002 + - - 255.8 + - 219.20000000000002 +? !!python/tuple +- 380 +- 379 +- 586 +: - - 250.45 + - 239.20000000000002 + - - 253.2 + - 229.20000000000002 +? !!python/tuple +- 381 +- 20 +- 605 +: - - 268.40000000000003 + - 209.25 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 382 +- 70 +- 625 +: - - 414.6 + - 197.9 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 383 +- 382 +- 614 +: - - 414.05 + - 207.9 + - - 414.6 + - 197.9 +? !!python/tuple +- 383 +- 387 +- 608 +: - - 414.05 + - 207.9 + - - 420.95000000000005 + - 216.10000000000002 +? !!python/tuple +- 385 +- 384 +- 591 +: - - 401.05 + - 215.3 + - - 411.05 + - 215.70000000000002 +? !!python/tuple +- 386 +- 385 +- 592 +: - - 391.05 + - 214.85000000000002 + - - 401.05 + - 215.3 +? !!python/tuple +- 387 +- 388 +- 590 +: - - 420.95000000000005 + - 216.10000000000002 + - - 430.95000000000005 + - 216.5 +? !!python/tuple +- 388 +- 389 +- 589 +: - - 430.95000000000005 + - 216.5 + - - 440.95000000000005 + - 216.95000000000002 +? !!python/tuple +- 390 +- 390 +- 596 +: - - 447.35 + - 212.5 + - - 447.35 + - 212.5 +? !!python/tuple +- 390 +- 391 +- 611 +: - - 447.35 + - 212.5 + - - 447.85 + - 202.5 +? !!python/tuple +- 391 +- 98 +- 617 +: - - 447.85 + - 202.5 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 392 +- 393 +- 623 +: - - 424.8 + - 188.35000000000002 + - - 434.8 + - 190.4 +? !!python/tuple +- 393 +- 98 +- 621 +: - - 434.8 + - 190.4 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 394 +- 91 +- 636 +: - - 348.70000000000005 + - 184.95000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 395 +- 394 +- 627 +: - - 348.25 + - 194.95000000000002 + - - 348.70000000000005 + - 184.95000000000002 +? !!python/tuple +- 396 +- 395 +- 616 +: - - 347.75 + - 204.95000000000002 + - - 348.25 + - 194.95000000000002 +? !!python/tuple +- 397 +- 398 +- 635 +: - - 359.5 + - 175.3 + - - 369.5 + - 177.0 +? !!python/tuple +- 398 +- 399 +- 634 +: - - 369.5 + - 177.0 + - - 379.5 + - 179.05 +? !!python/tuple +- 399 +- 402 +- 633 +: - - 379.5 + - 179.05 + - - 393.6 + - 181.95000000000002 +? !!python/tuple +- 401 +- 400 +- 624 +: - - 381.20000000000005 + - 197.9 + - - 381.70000000000005 + - 187.9 +? !!python/tuple +- 402 +- 403 +- 630 +: - - 393.6 + - 181.95000000000002 + - - 403.6 + - 184.0 +? !!python/tuple +- 403 +- 70 +- 628 +: - - 403.6 + - 184.0 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 404 +- 67 +- 639 +: - - 315.15000000000003 + - 183.35000000000002 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 405 +- 404 +- 629 +: - - 314.70000000000005 + - 193.35000000000002 + - - 315.15000000000003 + - 183.35000000000002 +? !!python/tuple +- 406 +- 405 +- 618 +: - - 314.20000000000005 + - 203.35000000000002 + - - 314.70000000000005 + - 193.35000000000002 +? !!python/tuple +- 407 +- 51 +- 641 +: - - 325.90000000000003 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 408 +- 41 +- 644 +: - - 282.6 + - 181.25 + - - 283.0 + - 170.75 +? !!python/tuple +- 409 +- 408 +- 631 +: - - 282.05 + - 191.25 + - - 282.6 + - 181.25 +? !!python/tuple +- 410 +- 409 +- 620 +: - - 281.5 + - 201.25 + - - 282.05 + - 191.25 +? !!python/tuple +- 411 +- 412 +- 645 +: - - 293.5 + - 171.15 + - - 303.5 + - 171.65 +? !!python/tuple +- 412 +- 67 +- 643 +: - - 303.5 + - 171.65 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 413 +- 69 +- 648 +: - - 259.3 + - 179.65 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 414 +- 413 +- 632 +: - - 258.6 + - 189.65 + - - 259.3 + - 179.65 +? !!python/tuple +- 415 +- 414 +- 622 +: - - 257.95 + - 199.65 + - - 258.6 + - 189.65 +? !!python/tuple +- 416 +- 41 +- 647 +: - - 271.15000000000003 + - 170.0 + - - 283.0 + - 170.75 +? !!python/tuple +- 417 +- 418 +- 653 +: - - 293.1 + - 160.85000000000002 + - - 303.1 + - 163.0 +? !!python/tuple +- 418 +- 419 +- 652 +: - - 303.1 + - 163.0 + - - 313.1 + - 165.10000000000002 +? !!python/tuple +- 419 +- 420 +- 651 +: - - 313.1 + - 165.10000000000002 + - - 333.1 + - 169.3 +? !!python/tuple +- 420 +- 61 +- 649 +: - - 333.1 + - 169.3 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 421 +- 422 +- 658 +: - - 265.45 + - 155.05 + - - 276.05 + - 157.20000000000002 +? !!python/tuple +- 422 +- 71 +- 656 +: - - 276.05 + - 157.20000000000002 + - - 283.45 + - 159.8 diff --git a/output_yaml/edges_high_level.yaml b/output_yaml/edges_high_level.yaml new file mode 100644 index 0000000..bb1eb46 --- /dev/null +++ b/output_yaml/edges_high_level.yaml @@ -0,0 +1,5296 @@ +? !!python/tuple +- 0 +- 66 +- 101 +: - - 394.8 + - 456.1 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 0 +- 85 +- 100 +: - - 394.8 + - 456.1 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 0 +- 228 +- 412 +: - - 394.8 + - 456.1 + - - 394.0 + - 466.65000000000003 +? !!python/tuple +- 0 +- 231 +- 413 +: - - 394.8 + - 456.1 + - - 405.35 + - 456.95000000000005 +? !!python/tuple +- 1 +- 28 +- 109 +: - - 262.8 + - 444.3 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 1 +- 86 +- 108 +: - - 262.8 + - 444.3 + - - 258.95 + - 486.1 +? !!python/tuple +- 1 +- 248 +- 432 +: - - 262.8 + - 444.3 + - - 261.85 + - 454.85 +? !!python/tuple +- 1 +- 251 +- 433 +: - - 262.8 + - 444.3 + - - 273.35 + - 445.25 +? !!python/tuple +- 2 +- 2 +- 137 +: - - 368.90000000000003 + - 366.5 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 2 +- 14 +- 127 +: - - 368.90000000000003 + - 366.5 + - - 365.1 + - 412.35 +? !!python/tuple +- 2 +- 15 +- 128 +: - - 368.90000000000003 + - 366.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 2 +- 297 +- 512 +: - - 368.90000000000003 + - 366.5 + - - 368.05 + - 377.05 +? !!python/tuple +- 2 +- 300 +- 513 +: - - 368.90000000000003 + - 366.5 + - - 379.45000000000005 + - 367.45000000000005 +? !!python/tuple +- 2 +- 330 +- 532 +: - - 368.90000000000003 + - 366.5 + - - 370.35 + - 349.05 +? !!python/tuple +- 3 +- 3 +- 0 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 1 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 180 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 183 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 5 +- 5 +- 12 +: - - 241.5 + - 586.1 + - - 241.5 + - 586.1 +? !!python/tuple +- 5 +- 5 +- 220 +: - - 241.5 + - 586.1 + - - 241.5 + - 586.1 +? !!python/tuple +- 5 +- 42 +- 11 +: - - 241.5 + - 586.1 + - - 240.65 + - 593.3000000000001 +? !!python/tuple +- 5 +- 42 +- 219 +: - - 241.5 + - 586.1 + - - 240.65 + - 593.3000000000001 +? !!python/tuple +- 6 +- 6 +- 16 +: - - 218.0 + - 576.9 + - - 218.0 + - 576.9 +? !!python/tuple +- 6 +- 6 +- 251 +: - - 218.0 + - 576.9 + - - 218.0 + - 576.9 +? !!python/tuple +- 6 +- 21 +- 18 +: - - 218.0 + - 576.9 + - - 235.15 + - 578.5 +? !!python/tuple +- 6 +- 21 +- 230 +: - - 218.0 + - 576.9 + - - 235.15 + - 578.5 +? !!python/tuple +- 7 +- 4 +- 30 +: - - 345.3 + - 568.1 + - - 340.05 + - 622.0 +? !!python/tuple +- 7 +- 34 +- 31 +: - - 345.3 + - 568.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 7 +- 34 +- 246 +: - - 345.3 + - 568.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 7 +- 139 +- 245 +: - - 345.3 + - 568.1 + - - 344.55 + - 578.65 +? !!python/tuple +- 8 +- 24 +- 68 +: - - 363.20000000000005 + - 530.65 + - - 367.0 + - 531.5500000000001 +? !!python/tuple +- 8 +- 24 +- 308 +: - - 363.20000000000005 + - 530.65 + - - 367.0 + - 531.5500000000001 +? !!python/tuple +- 9 +- 8 +- 75 +: - - 350.55 + - 525.8000000000001 + - - 363.20000000000005 + - 530.65 +? !!python/tuple +- 9 +- 8 +- 316 +: - - 350.55 + - 525.8000000000001 + - - 363.20000000000005 + - 530.65 +? !!python/tuple +- 10 +- 38 +- 87 +: - - 347.75 + - 500.90000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 10 +- 38 +- 363 +: - - 347.75 + - 500.90000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 11 +- 26 +- 104 +: - - 328.85 + - 450.6 + - - 325.1 + - 492.05 +? !!python/tuple +- 11 +- 40 +- 105 +: - - 328.85 + - 450.6 + - - 361.85 + - 453.5 +? !!python/tuple +- 11 +- 238 +- 422 +: - - 328.85 + - 450.6 + - - 327.90000000000003 + - 461.1 +? !!python/tuple +- 11 +- 241 +- 423 +: - - 328.85 + - 450.6 + - - 339.40000000000003 + - 451.55 +? !!python/tuple +- 12 +- 12 +- 113 +: - - 431.1 + - 417.6 + - - 431.1 + - 417.6 +? !!python/tuple +- 12 +- 66 +- 112 +: - - 431.1 + - 417.6 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 12 +- 262 +- 457 +: - - 431.1 + - 417.6 + - - 441.55 + - 418.5 +? !!python/tuple +- 12 +- 325 +- 475 +: - - 431.1 + - 417.6 + - - 432.05 + - 406.8 +? !!python/tuple +- 13 +- 0 +- 114 +: - - 398.20000000000005 + - 415.0 + - - 394.8 + - 456.1 +? !!python/tuple +- 13 +- 12 +- 115 +: - - 398.20000000000005 + - 415.0 + - - 431.1 + - 417.6 +? !!python/tuple +- 13 +- 15 +- 126 +: - - 398.20000000000005 + - 415.0 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 13 +- 264 +- 461 +: - - 398.20000000000005 + - 415.0 + - - 397.35 + - 425.5 +? !!python/tuple +- 13 +- 267 +- 462 +: - - 398.20000000000005 + - 415.0 + - - 408.75 + - 415.90000000000003 +? !!python/tuple +- 14 +- 13 +- 117 +: - - 365.1 + - 412.35 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 14 +- 40 +- 116 +: - - 365.1 + - 412.35 + - - 361.85 + - 453.5 +? !!python/tuple +- 14 +- 269 +- 466 +: - - 365.1 + - 412.35 + - - 364.3 + - 422.90000000000003 +? !!python/tuple +- 14 +- 272 +- 467 +: - - 365.1 + - 412.35 + - - 375.6 + - 413.20000000000005 +? !!python/tuple +- 15 +- 15 +- 135 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 15 +- 136 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 321 +- 507 +: - - 401.95000000000005 + - 369.5 + - - 418.05 + - 370.85 +? !!python/tuple +- 15 +- 328 +- 520 +: - - 401.95000000000005 + - 369.5 + - - 402.65000000000003 + - 361.70000000000005 +? !!python/tuple +- 16 +- 31 +- 131 +: - - 304.15000000000003 + - 360.5 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 16 +- 52 +- 132 +: - - 304.15000000000003 + - 360.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 16 +- 307 +- 522 +: - - 304.15000000000003 + - 360.5 + - - 303.15000000000003 + - 371.05 +? !!python/tuple +- 16 +- 310 +- 523 +: - - 304.15000000000003 + - 360.5 + - - 314.65000000000003 + - 361.55 +? !!python/tuple +- 17 +- 16 +- 139 +: - - 306.1 + - 331.3 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 17 +- 17 +- 140 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 17 +- 545 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 333 +- 543 +: - - 306.1 + - 331.3 + - - 305.85 + - 341.8 +? !!python/tuple +- 18 +- 17 +- 142 +: - - 273.15000000000003 + - 328.0 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 88 +- 141 +: - - 273.15000000000003 + - 328.0 + - - 271.1 + - 357.25 +? !!python/tuple +- 18 +- 335 +- 547 +: - - 273.15000000000003 + - 328.0 + - - 272.35 + - 338.55 +? !!python/tuple +- 18 +- 337 +- 548 +: - - 273.15000000000003 + - 328.0 + - - 283.65000000000003 + - 328.90000000000003 +? !!python/tuple +- 19 +- 19 +- 150 +: - - 278.75 + - 249.40000000000003 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 19 +- 20 +- 155 +: - - 278.75 + - 249.40000000000003 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 19 +- 361 +- 578 +: - - 278.75 + - 249.40000000000003 + - - 289.15000000000003 + - 249.90000000000003 +? !!python/tuple +- 19 +- 375 +- 583 +: - - 278.75 + - 249.40000000000003 + - - 279.40000000000003 + - 240.55 +? !!python/tuple +- 20 +- 41 +- 168 +: - - 281.15000000000003 + - 210.05 + - - 283.0 + - 170.75 +? !!python/tuple +- 20 +- 49 +- 156 +: - - 281.15000000000003 + - 210.05 + - - 313.85 + - 211.0 +? !!python/tuple +- 20 +- 376 +- 604 +: - - 281.15000000000003 + - 210.05 + - - 291.05 + - 210.35000000000002 +? !!python/tuple +- 20 +- 410 +- 612 +: - - 281.15000000000003 + - 210.05 + - - 281.5 + - 201.25 +? !!python/tuple +- 21 +- 54 +- 14 +: - - 235.15 + - 578.5 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 21 +- 54 +- 224 +: - - 235.15 + - 578.5 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 22 +- 58 +- 44 +: - - 428.3 + - 545.8000000000001 + - - 432.75 + - 548.65 +? !!python/tuple +- 22 +- 58 +- 267 +: - - 428.3 + - 545.8000000000001 + - - 432.75 + - 548.65 +? !!python/tuple +- 24 +- 50 +- 73 +: - - 367.0 + - 531.5500000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 24 +- 50 +- 314 +: - - 367.0 + - 531.5500000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 24 +- 80 +- 64 +: - - 367.0 + - 531.5500000000001 + - - 416.95000000000005 + - 536.1 +? !!python/tuple +- 24 +- 159 +- 303 +: - - 367.0 + - 531.5500000000001 + - - 377.5 + - 532.65 +? !!python/tuple +- 25 +- 96 +- 65 +: - - 243.55 + - 531.15 + - - 263.7 + - 533.15 +? !!python/tuple +- 25 +- 163 +- 304 +: - - 243.55 + - 531.15 + - - 254.05 + - 532.65 +? !!python/tuple +- 26 +- 38 +- 92 +: - - 325.1 + - 492.05 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 26 +- 201 +- 375 +: - - 325.1 + - 492.05 + - - 335.6 + - 493.65000000000003 +? !!python/tuple +- 27 +- 90 +- 153 +: - - 347.40000000000003 + - 212.5 + - - 380.5 + - 214.0 +? !!python/tuple +- 27 +- 91 +- 162 +: - - 347.40000000000003 + - 212.5 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 27 +- 369 +- 597 +: - - 347.40000000000003 + - 212.5 + - - 357.90000000000003 + - 213.4 +? !!python/tuple +- 27 +- 396 +- 609 +: - - 347.40000000000003 + - 212.5 + - - 347.75 + - 204.95000000000002 +? !!python/tuple +- 28 +- 11 +- 107 +: - - 295.75 + - 447.45000000000005 + - - 328.85 + - 450.6 +? !!python/tuple +- 28 +- 39 +- 106 +: - - 295.75 + - 447.45000000000005 + - - 291.85 + - 489.0 +? !!python/tuple +- 28 +- 243 +- 427 +: - - 295.75 + - 447.45000000000005 + - - 294.90000000000003 + - 457.95000000000005 +? !!python/tuple +- 28 +- 246 +- 428 +: - - 295.75 + - 447.45000000000005 + - - 306.25 + - 448.45000000000005 +? !!python/tuple +- 29 +- 18 +- 145 +: - - 276.2 + - 288.8 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 29 +- 19 +- 149 +: - - 276.2 + - 288.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 29 +- 29 +- 146 +: - - 276.2 + - 288.8 + - - 276.2 + - 288.8 +? !!python/tuple +- 29 +- 341 +- 562 +: - - 276.2 + - 288.8 + - - 275.55 + - 299.3 +? !!python/tuple +- 29 +- 344 +- 563 +: - - 276.2 + - 288.8 + - - 286.7 + - 289.3 +? !!python/tuple +- 30 +- 11 +- 118 +: - - 332.75 + - 409.55 + - - 328.85 + - 450.6 +? !!python/tuple +- 30 +- 14 +- 119 +: - - 332.75 + - 409.55 + - - 365.1 + - 412.35 +? !!python/tuple +- 30 +- 274 +- 471 +: - - 332.75 + - 409.55 + - - 331.75 + - 420.1 +? !!python/tuple +- 30 +- 277 +- 472 +: - - 332.75 + - 409.55 + - - 343.3 + - 410.5 +? !!python/tuple +- 31 +- 28 +- 120 +: - - 299.90000000000003 + - 406.20000000000005 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 31 +- 30 +- 121 +: - - 299.90000000000003 + - 406.20000000000005 + - - 332.75 + - 409.55 +? !!python/tuple +- 31 +- 279 +- 476 +: - - 299.90000000000003 + - 406.20000000000005 + - - 298.75 + - 416.70000000000005 +? !!python/tuple +- 31 +- 282 +- 477 +: - - 299.90000000000003 + - 406.20000000000005 + - - 310.40000000000003 + - 407.35 +? !!python/tuple +- 32 +- 1 +- 122 +: - - 266.2 + - 403.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 32 +- 31 +- 123 +: - - 266.2 + - 403.15000000000003 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 32 +- 284 +- 480 +: - - 266.2 + - 403.15000000000003 + - - 265.40000000000003 + - 413.65000000000003 +? !!python/tuple +- 32 +- 287 +- 481 +: - - 266.2 + - 403.15000000000003 + - - 276.65000000000003 + - 404.05 +? !!python/tuple +- 33 +- 33 +- 7 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 9 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 212 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 214 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 34 +- 34 +- 27 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 34 +- 29 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 34 +- 241 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 137 +- 244 +: - - 359.0 + - 570.1 + - - 368.95000000000005 + - 570.4 +? !!python/tuple +- 35 +- 22 +- 47 +: - - 429.8 + - 540.35 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 35 +- 22 +- 277 +: - - 429.8 + - 540.35 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 37 +- 21 +- 63 +: - - 235.8 + - 532.1 + - - 235.15 + - 578.5 +? !!python/tuple +- 37 +- 25 +- 66 +: - - 235.8 + - 532.1 + - - 243.55 + - 531.15 +? !!python/tuple +- 37 +- 25 +- 306 +: - - 235.8 + - 532.1 + - - 243.55 + - 531.15 +? !!python/tuple +- 37 +- 155 +- 301 +: - - 235.8 + - 532.1 + - - 239.4 + - 541.0 +? !!python/tuple +- 38 +- 75 +- 98 +: - - 356.15000000000003 + - 498.95000000000005 + - - 434.6 + - 519.35 +? !!python/tuple +- 38 +- 225 +- 372 +: - - 356.15000000000003 + - 498.95000000000005 + - - 399.40000000000003 + - 504.5 +? !!python/tuple +- 39 +- 26 +- 95 +: - - 291.85 + - 489.0 + - - 325.1 + - 492.05 +? !!python/tuple +- 39 +- 212 +- 381 +: - - 291.85 + - 489.0 + - - 302.3 + - 490.6 +? !!python/tuple +- 40 +- 0 +- 103 +: - - 361.85 + - 453.5 + - - 394.8 + - 456.1 +? !!python/tuple +- 40 +- 72 +- 102 +: - - 361.85 + - 453.5 + - - 358.45000000000005 + - 495.6 +? !!python/tuple +- 40 +- 233 +- 417 +: - - 361.85 + - 453.5 + - - 360.90000000000003 + - 464.0 +? !!python/tuple +- 40 +- 236 +- 418 +: - - 361.85 + - 453.5 + - - 372.35 + - 454.3 +? !!python/tuple +- 41 +- 67 +- 169 +: - - 283.0 + - 170.75 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 41 +- 71 +- 172 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 71 +- 654 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 411 +- 646 +: - - 283.0 + - 170.75 + - - 293.5 + - 171.15 +? !!python/tuple +- 42 +- 4 +- 8 +: - - 240.65 + - 593.3000000000001 + - - 340.05 + - 622.0 +? !!python/tuple +- 42 +- 64 +- 6 +: - - 240.65 + - 593.3000000000001 + - - 253.3 + - 602.25 +? !!python/tuple +- 42 +- 105 +- 213 +: - - 240.65 + - 593.3000000000001 + - - 234.05 + - 602.45 +? !!python/tuple +- 43 +- 94 +- 61 +: - - 361.20000000000005 + - 533.0500000000001 + - - 408.45000000000005 + - 546.5 +? !!python/tuple +- 43 +- 151 +- 296 +: - - 361.20000000000005 + - 533.0500000000001 + - - 370.6 + - 542.4 +? !!python/tuple +- 44 +- 183 +- 344 +: - - 285.8 + - 507.80000000000007 + - - 285.35 + - 518.3000000000001 +? !!python/tuple +- 45 +- 45 +- 4 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 45 +- 45 +- 17 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 45 +- 45 +- 229 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 46 +- 56 +- 23 +: - - 405.95000000000005 + - 573.4 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 46 +- 56 +- 235 +: - - 405.95000000000005 + - 573.4 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 47 +- 47 +- 35 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 36 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 37 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 38 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 39 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 42 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 45 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 260 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 48 +- 44 +- 85 +: - - 276.85 + - 501.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 48 +- 44 +- 356 +: - - 276.85 + - 501.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 48 +- 59 +- 86 +: - - 276.85 + - 501.45000000000005 + - - 287.05 + - 502.45000000000005 +? !!python/tuple +- 48 +- 59 +- 357 +: - - 276.85 + - 501.45000000000005 + - - 287.05 + - 502.45000000000005 +? !!python/tuple +- 49 +- 27 +- 154 +: - - 313.85 + - 211.0 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 49 +- 67 +- 165 +: - - 313.85 + - 211.0 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 49 +- 371 +- 600 +: - - 313.85 + - 211.0 + - - 324.35 + - 211.9 +? !!python/tuple +- 49 +- 406 +- 610 +: - - 313.85 + - 211.0 + - - 314.20000000000005 + - 203.35000000000002 +? !!python/tuple +- 50 +- 23 +- 53 +: - - 434.95000000000005 + - 537.45 + - - 441.0 + - 538.15 +? !!python/tuple +- 50 +- 23 +- 284 +: - - 434.95000000000005 + - 537.45 + - - 441.0 + - 538.15 +? !!python/tuple +- 52 +- 2 +- 130 +: - - 337.40000000000003 + - 363.65000000000003 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 52 +- 30 +- 129 +: - - 337.40000000000003 + - 363.65000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 52 +- 52 +- 138 +: - - 337.40000000000003 + - 363.65000000000003 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 52 +- 302 +- 517 +: - - 337.40000000000003 + - 363.65000000000003 + - - 336.35 + - 374.15000000000003 +? !!python/tuple +- 52 +- 305 +- 518 +: - - 337.40000000000003 + - 363.65000000000003 + - - 347.8 + - 364.6 +? !!python/tuple +- 53 +- 23 +- 59 +: - - 442.35 + - 535.35 + - - 441.0 + - 538.15 +? !!python/tuple +- 53 +- 23 +- 291 +: - - 442.35 + - 535.35 + - - 441.0 + - 538.15 +? !!python/tuple +- 53 +- 47 +- 58 +: - - 442.35 + - 535.35 + - - 448.05 + - 549.45 +? !!python/tuple +- 53 +- 47 +- 290 +: - - 442.35 + - 535.35 + - - 448.05 + - 549.45 +? !!python/tuple +- 54 +- 5 +- 13 +: - - 237.9 + - 579.0500000000001 + - - 241.5 + - 586.1 +? !!python/tuple +- 54 +- 5 +- 221 +: - - 237.9 + - 579.0500000000001 + - - 241.5 + - 586.1 +? !!python/tuple +- 54 +- 54 +- 22 +: - - 237.9 + - 579.0500000000001 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 54 +- 54 +- 234 +: - - 237.9 + - 579.0500000000001 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 55 +- 45 +- 19 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.25 + - 576.9 +? !!python/tuple +- 55 +- 45 +- 231 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.25 + - 576.9 +? !!python/tuple +- 55 +- 55 +- 5 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 55 +- 15 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 55 +- 227 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 62 +- 28 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 56 +- 55 +- 21 +: - - 423.45000000000005 + - 576.1 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 56 +- 55 +- 233 +: - - 423.45000000000005 + - 576.1 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 56 +- 56 +- 20 +: - - 423.45000000000005 + - 576.1 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 56 +- 56 +- 232 +: - - 423.45000000000005 + - 576.1 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 57 +- 46 +- 25 +: - - 391.3 + - 573.1 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 57 +- 46 +- 237 +: - - 391.3 + - 573.1 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 57 +- 57 +- 24 +: - - 391.3 + - 573.1 + - - 391.3 + - 573.1 +? !!python/tuple +- 57 +- 57 +- 236 +: - - 391.3 + - 573.1 + - - 391.3 + - 573.1 +? !!python/tuple +- 58 +- 58 +- 40 +: - - 432.75 + - 548.65 + - - 432.75 + - 548.65 +? !!python/tuple +- 58 +- 58 +- 262 +: - - 432.75 + - 548.65 + - - 432.75 + - 548.65 +? !!python/tuple +- 58 +- 62 +- 41 +: - - 432.75 + - 548.65 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 58 +- 146 +- 263 +: - - 432.75 + - 548.65 + - - 445.75 + - 556.65 +? !!python/tuple +- 59 +- 44 +- 83 +: - - 287.05 + - 502.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 59 +- 44 +- 353 +: - - 287.05 + - 502.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 59 +- 63 +- 84 +: - - 287.05 + - 502.45000000000005 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 59 +- 190 +- 355 +: - - 287.05 + - 502.45000000000005 + - - 297.20000000000005 + - 502.80000000000007 +? !!python/tuple +- 60 +- 96 +- 90 +: - - 246.8 + - 498.55 + - - 263.7 + - 533.15 +? !!python/tuple +- 60 +- 195 +- 368 +: - - 246.8 + - 498.55 + - - 256.8 + - 498.85 +? !!python/tuple +- 61 +- 61 +- 164 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 61 +- 638 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 91 +- 166 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 61 +- 91 +- 640 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 62 +- 45 +- 26 +: - - 444.15000000000003 + - 570.75 + - - 444.25 + - 576.9 +? !!python/tuple +- 62 +- 45 +- 240 +: - - 444.15000000000003 + - 570.75 + - - 444.25 + - 576.9 +? !!python/tuple +- 62 +- 62 +- 32 +: - - 444.15000000000003 + - 570.75 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 63 +- 63 +- 76 +: - - 334.90000000000003 + - 527.1 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 63 +- 63 +- 319 +: - - 334.90000000000003 + - 527.1 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 63 +- 92 +- 71 +: - - 334.90000000000003 + - 527.1 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 63 +- 92 +- 312 +: - - 334.90000000000003 + - 527.1 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 63 +- 97 +- 72 +: - - 334.90000000000003 + - 527.1 + - - 341.35 + - 527.7 +? !!python/tuple +- 63 +- 97 +- 313 +: - - 334.90000000000003 + - 527.1 + - - 341.35 + - 527.7 +? !!python/tuple +- 64 +- 93 +- 10 +: - - 253.3 + - 602.25 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 64 +- 125 +- 209 +: - - 253.3 + - 602.25 + - - 263.0 + - 594.1 +? !!python/tuple +- 64 +- 130 +- 205 +: - - 253.3 + - 602.25 + - - 260.65000000000003 + - 604.7 +? !!python/tuple +- 65 +- 6 +- 93 +: - - 232.50047302246094 + - 490.51361083984375 + - - 218.0 + - 576.9 +? !!python/tuple +- 65 +- 60 +- 94 +: - - 232.50047302246094 + - 490.51361083984375 + - - 246.8 + - 498.55 +? !!python/tuple +- 65 +- 60 +- 378 +: - - 232.47743225097656 + - 490.1767883300781 + - - 246.8 + - 498.55 +? !!python/tuple +- 65 +- 65 +- 110 +: - - 232.50047302246094 + - 490.51361083984375 + - - 232.50047302246094 + - 490.51361083984375 +? !!python/tuple +- 65 +- 86 +- 97 +: - - 232.50047302246094 + - 490.51361083984375 + - - 258.95 + - 486.1 +? !!python/tuple +- 65 +- 216 +- 386 +: - - 232.47743225097656 + - 490.1767883300781 + - - 242.25 + - 485.15000000000003 +? !!python/tuple +- 66 +- 66 +- 99 +: - - 427.90000000000003 + - 458.8 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 66 +- 217 +- 407 +: - - 427.90000000000003 + - 458.8 + - - 427.0 + - 469.35 +? !!python/tuple +- 66 +- 226 +- 408 +: - - 427.90000000000003 + - 458.8 + - - 438.45000000000005 + - 459.65000000000003 +? !!python/tuple +- 67 +- 51 +- 167 +: - - 315.75 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 67 +- 407 +- 642 +: - - 315.75 + - 172.85000000000002 + - - 325.90000000000003 + - 172.85000000000002 +? !!python/tuple +- 68 +- 35 +- 52 +: - - 430.70000000000005 + - 537.3000000000001 + - - 429.8 + - 540.35 +? !!python/tuple +- 68 +- 35 +- 283 +: - - 430.70000000000005 + - 537.3000000000001 + - - 429.8 + - 540.35 +? !!python/tuple +- 68 +- 50 +- 54 +: - - 430.70000000000005 + - 537.3000000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 68 +- 50 +- 285 +: - - 430.70000000000005 + - 537.3000000000001 + - - 434.95000000000005 + - 537.45 +? !!python/tuple +- 69 +- 41 +- 171 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.0 + - 170.75 +? !!python/tuple +- 69 +- 71 +- 174 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 69 +- 416 +- 650 +: - - 260.65000000000003 + - 169.20000000000002 + - - 271.15000000000003 + - 170.0 +? !!python/tuple +- 69 +- 421 +- 657 +: - - 260.65000000000003 + - 169.20000000000002 + - - 265.45 + - 155.05 +? !!python/tuple +- 70 +- 98 +- 160 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 161 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 392 +- 626 +: - - 415.25 + - 187.35000000000002 + - - 424.8 + - 188.35000000000002 +? !!python/tuple +- 71 +- 51 +- 173 +: - - 283.45 + - 159.8 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 71 +- 417 +- 655 +: - - 283.45 + - 159.8 + - - 293.1 + - 160.85000000000002 +? !!python/tuple +- 72 +- 85 +- 91 +: - - 358.45000000000005 + - 495.6 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 72 +- 199 +- 373 +: - - 358.45000000000005 + - 495.6 + - - 368.95000000000005 + - 496.55 +? !!python/tuple +- 73 +- 22 +- 46 +: - - 427.3 + - 540.75 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 73 +- 22 +- 276 +: - - 427.3 + - 540.75 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 73 +- 35 +- 48 +: - - 427.3 + - 540.75 + - - 429.8 + - 540.35 +? !!python/tuple +- 73 +- 35 +- 278 +: - - 427.3 + - 540.75 + - - 429.8 + - 540.35 +? !!python/tuple +- 74 +- 7 +- 60 +: - - 350.15000000000003 + - 533.2 + - - 345.3 + - 568.1 +? !!python/tuple +- 74 +- 43 +- 62 +: - - 350.15000000000003 + - 533.2 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 74 +- 43 +- 298 +: - - 350.15000000000003 + - 533.2 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 74 +- 149 +- 294 +: - - 350.15000000000003 + - 533.2 + - - 349.3 + - 543.7 +? !!python/tuple +- 75 +- 53 +- 77 +: - - 434.6 + - 519.35 + - - 442.35 + - 535.35 +? !!python/tuple +- 75 +- 53 +- 325 +: - - 434.6 + - 519.35 + - - 442.35 + - 535.35 +? !!python/tuple +- 76 +- 10 +- 89 +: - - 345.05 + - 498.20000000000005 + - - 347.75 + - 500.90000000000003 +? !!python/tuple +- 76 +- 10 +- 366 +: - - 345.05 + - 498.20000000000005 + - - 347.75 + - 500.90000000000003 +? !!python/tuple +- 76 +- 84 +- 82 +: - - 345.05 + - 498.20000000000005 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 76 +- 194 +- 365 +: - - 345.05 + - 498.20000000000005 + - - 343.85 + - 511.6 +? !!python/tuple +- 77 +- 1 +- 111 +: - - 227.5 + - 441.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 77 +- 253 +- 437 +: - - 227.5 + - 441.15000000000003 + - - 226.10000000000002 + - 451.6 +? !!python/tuple +- 77 +- 257 +- 438 +: - - 227.5 + - 441.15000000000003 + - - 238.0 + - 441.90000000000003 +? !!python/tuple +- 78 +- 18 +- 144 +: - - 242.60000000000002 + - 325.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 78 +- 78 +- 143 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 78 +- 551 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 339 +- 552 +: - - 242.60000000000002 + - 325.3 + - - 253.10000000000002 + - 326.05 +? !!python/tuple +- 79 +- 20 +- 158 +: - - 257.90000000000003 + - 208.75 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 79 +- 69 +- 170 +: - - 257.90000000000003 + - 208.75 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 79 +- 381 +- 607 +: - - 257.90000000000003 + - 208.75 + - - 268.40000000000003 + - 209.25 +? !!python/tuple +- 79 +- 415 +- 613 +: - - 257.90000000000003 + - 208.75 + - - 257.95 + - 199.65 +? !!python/tuple +- 80 +- 36 +- 57 +: - - 416.95000000000005 + - 536.1 + - - 418.45000000000005 + - 539.7 +? !!python/tuple +- 80 +- 36 +- 288 +: - - 416.95000000000005 + - 536.1 + - - 418.45000000000005 + - 539.7 +? !!python/tuple +- 80 +- 95 +- 56 +: - - 416.95000000000005 + - 536.1 + - - 416.0 + - 539.15 +? !!python/tuple +- 80 +- 95 +- 287 +: - - 416.95000000000005 + - 536.1 + - - 416.0 + - 539.15 +? !!python/tuple +- 81 +- 81 +- 70 +: - - 342.35 + - 567.25 + - - 342.35 + - 567.25 +? !!python/tuple +- 82 +- 68 +- 55 +: - - 427.35 + - 537.4 + - - 430.70000000000005 + - 537.3000000000001 +? !!python/tuple +- 82 +- 68 +- 286 +: - - 427.35 + - 537.4 + - - 430.70000000000005 + - 537.3000000000001 +? !!python/tuple +- 82 +- 73 +- 51 +: - - 427.35 + - 537.4 + - - 427.3 + - 540.75 +? !!python/tuple +- 82 +- 73 +- 282 +: - - 427.35 + - 537.4 + - - 427.3 + - 540.75 +? !!python/tuple +- 83 +- 43 +- 69 +: - - 350.25 + - 530.6 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 83 +- 43 +- 309 +: - - 350.25 + - 530.6 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 83 +- 74 +- 67 +: - - 350.25 + - 530.6 + - - 350.15000000000003 + - 533.2 +? !!python/tuple +- 83 +- 74 +- 307 +: - - 350.25 + - 530.6 + - - 350.15000000000003 + - 533.2 +? !!python/tuple +- 84 +- 9 +- 78 +: - - 347.90000000000003 + - 518.8000000000001 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 84 +- 9 +- 327 +: - - 347.90000000000003 + - 518.8000000000001 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 84 +- 75 +- 79 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 75 +- 80 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 84 +- 88 +: - - 347.90000000000003 + - 518.8000000000001 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 85 +- 222 +- 367 +: - - 391.45000000000005 + - 497.90000000000003 + - - 405.6 + - 499.70000000000005 +? !!python/tuple +- 86 +- 39 +- 96 +: - - 258.95 + - 486.1 + - - 291.85 + - 489.0 +? !!python/tuple +- 86 +- 214 +- 385 +: - - 258.95 + - 486.1 + - - 269.45 + - 487.70000000000005 +? !!python/tuple +- 87 +- 32 +- 125 +: - - 230.9 + - 400.35 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 87 +- 77 +- 124 +: - - 230.9 + - 400.35 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 87 +- 289 +- 484 +: - - 230.9 + - 400.35 + - - 229.65 + - 410.85 +? !!python/tuple +- 87 +- 292 +- 486 +: - - 230.9 + - 400.35 + - - 241.45000000000002 + - 401.05 +? !!python/tuple +- 88 +- 16 +- 134 +: - - 271.1 + - 357.25 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 88 +- 32 +- 133 +: - - 271.1 + - 357.25 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 88 +- 312 +- 526 +: - - 271.1 + - 357.25 + - - 269.25 + - 367.70000000000005 +? !!python/tuple +- 88 +- 315 +- 527 +: - - 271.1 + - 357.25 + - - 281.6 + - 358.45000000000005 +? !!python/tuple +- 89 +- 19 +- 152 +: - - 248.75 + - 247.10000000000002 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 89 +- 79 +- 157 +: - - 248.75 + - 247.10000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 89 +- 99 +- 151 +: - - 248.75 + - 247.10000000000002 + - - 241.25 + - 286.2 +? !!python/tuple +- 89 +- 364 +- 581 +: - - 248.75 + - 247.10000000000002 + - - 245.4 + - 257.55 +? !!python/tuple +- 89 +- 367 +- 582 +: - - 248.75 + - 247.10000000000002 + - - 259.3 + - 248.2 +? !!python/tuple +- 89 +- 380 +- 584 +: - - 248.75 + - 247.10000000000002 + - - 250.45 + - 239.20000000000002 +? !!python/tuple +- 90 +- 386 +- 593 +: - - 380.5 + - 214.0 + - - 391.05 + - 214.85000000000002 +? !!python/tuple +- 90 +- 401 +- 615 +: - - 380.5 + - 214.0 + - - 381.20000000000005 + - 197.9 +? !!python/tuple +- 91 +- 70 +- 163 +: - - 349.35 + - 174.45000000000002 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 91 +- 397 +- 637 +: - - 349.35 + - 174.45000000000002 + - - 359.5 + - 175.3 +? !!python/tuple +- 92 +- 81 +- 34 +: - - 330.90000000000003 + - 567.0500000000001 + - - 342.35 + - 567.25 +? !!python/tuple +- 92 +- 81 +- 248 +: - - 330.90000000000003 + - 567.0500000000001 + - - 342.35 + - 567.25 +? !!python/tuple +- 92 +- 92 +- 33 +: - - 330.90000000000003 + - 567.0500000000001 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 92 +- 92 +- 247 +: - - 330.90000000000003 + - 567.0500000000001 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 93 +- 4 +- 2 +: - - 316.95000000000005 + - 618.75 + - - 340.05 + - 622.0 +? !!python/tuple +- 93 +- 93 +- 3 +: - - 316.95000000000005 + - 618.75 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 93 +- 100 +- 195 +: - - 316.95000000000005 + - 618.75 + - - 327.40000000000003 + - 621.5 +? !!python/tuple +- 94 +- 22 +- 50 +: - - 408.45000000000005 + - 546.5 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 94 +- 22 +- 280 +: - - 408.45000000000005 + - 546.5 + - - 428.3 + - 545.8000000000001 +? !!python/tuple +- 94 +- 46 +- 43 +: - - 408.45000000000005 + - 546.5 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 94 +- 147 +- 266 +: - - 408.45000000000005 + - 546.5 + - - 407.45000000000005 + - 557.0 +? !!python/tuple +- 95 +- 95 +- 49 +: - - 416.0 + - 539.15 + - - 416.0 + - 539.15 +? !!python/tuple +- 95 +- 95 +- 279 +: - - 416.0 + - 539.15 + - - 416.0 + - 539.15 +? !!python/tuple +- 96 +- 44 +- 81 +: - - 263.7 + - 533.15 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 96 +- 185 +- 297 +: - - 263.7 + - 533.15 + - - 280.35 + - 535.15 +? !!python/tuple +- 97 +- 9 +- 74 +: - - 341.35 + - 527.7 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 97 +- 9 +- 315 +: - - 341.35 + - 527.7 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 97 +- 164 +- 311 +: - - 341.35 + - 527.7 + - - 338.6 + - 537.6 +? !!python/tuple +- 98 +- 98 +- 159 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 98 +- 98 +- 619 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 99 +- 29 +- 148 +: - - 241.25 + - 286.2 + - - 276.2 + - 288.8 +? !!python/tuple +- 99 +- 87 +- 147 +: - - 241.25 + - 286.2 + - - 230.9 + - 400.35 +? !!python/tuple +- 99 +- 347 +- 566 +: - - 241.25 + - 286.2 + - - 239.70000000000002 + - 296.65000000000003 +? !!python/tuple +- 99 +- 356 +- 567 +: - - 241.25 + - 286.2 + - - 251.7 + - 286.90000000000003 +? !!python/tuple +- 100 +- 4 +- 191 +: - - 327.40000000000003 + - 621.5 + - - 340.05 + - 622.0 +? !!python/tuple +- 101 +- 102 +- 204 +: - - 312.55 + - 602.4 + - - 318.15000000000003 + - 611.2 +? !!python/tuple +- 102 +- 93 +- 199 +: - - 318.15000000000003 + - 611.2 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 103 +- 103 +- 210 +: - - 446.05 + - 595.9 + - - 446.05 + - 595.9 +? !!python/tuple +- 104 +- 64 +- 206 +: - - 243.8 + - 601.65 + - - 253.3 + - 602.25 +? !!python/tuple +- 104 +- 104 +- 211 +: - - 243.8 + - 601.65 + - - 243.8 + - 601.65 +? !!python/tuple +- 105 +- 106 +- 203 +: - - 234.05 + - 602.45 + - - 233.10000000000002 + - 612.45 +? !!python/tuple +- 106 +- 107 +- 198 +: - - 233.10000000000002 + - 612.45 + - - 237.45000000000002 + - 619.3000000000001 +? !!python/tuple +- 107 +- 108 +- 194 +: - - 237.45000000000002 + - 619.3000000000001 + - - 247.45 + - 620.2 +? !!python/tuple +- 108 +- 109 +- 193 +: - - 247.45 + - 620.2 + - - 257.45 + - 621.1500000000001 +? !!python/tuple +- 109 +- 110 +- 192 +: - - 257.45 + - 621.1500000000001 + - - 267.45 + - 622.1 +? !!python/tuple +- 110 +- 111 +- 190 +: - - 267.45 + - 622.1 + - - 277.45 + - 623.0500000000001 +? !!python/tuple +- 111 +- 112 +- 187 +: - - 277.45 + - 623.0500000000001 + - - 287.45 + - 624.0 +? !!python/tuple +- 112 +- 113 +- 185 +: - - 287.45 + - 624.0 + - - 292.25 + - 629.9000000000001 +? !!python/tuple +- 113 +- 114 +- 179 +: - - 292.25 + - 629.9000000000001 + - - 302.25 + - 631.0 +? !!python/tuple +- 114 +- 115 +- 178 +: - - 302.25 + - 631.0 + - - 312.25 + - 632.0500000000001 +? !!python/tuple +- 115 +- 116 +- 177 +: - - 312.25 + - 632.0500000000001 + - - 322.25 + - 633.1 +? !!python/tuple +- 116 +- 117 +- 176 +: - - 322.25 + - 633.1 + - - 332.25 + - 634.1 +? !!python/tuple +- 117 +- 118 +- 175 +: - - 332.25 + - 634.1 + - - 340.90000000000003 + - 633.1500000000001 +? !!python/tuple +- 119 +- 118 +- 189 +: - - 351.6 + - 622.4000000000001 + - - 340.90000000000003 + - 633.1500000000001 +? !!python/tuple +- 119 +- 120 +- 188 +: - - 351.6 + - 622.4000000000001 + - - 361.6 + - 623.3000000000001 +? !!python/tuple +- 120 +- 121 +- 186 +: - - 361.6 + - 623.3000000000001 + - - 368.1 + - 627.85 +? !!python/tuple +- 121 +- 121 +- 181 +: - - 368.1 + - 627.85 + - - 368.1 + - 627.85 +? !!python/tuple +- 122 +- 123 +- 184 +: - - 382.5 + - 624.8000000000001 + - - 392.5 + - 625.6500000000001 +? !!python/tuple +- 123 +- 3 +- 182 +: - - 392.5 + - 625.6500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 124 +- 126 +- 218 +: - - 273.0 + - 586.9 + - - 283.0 + - 587.65 +? !!python/tuple +- 125 +- 124 +- 217 +: - - 263.0 + - 594.1 + - - 273.0 + - 586.9 +? !!python/tuple +- 126 +- 127 +- 216 +: - - 283.0 + - 587.65 + - - 285.90000000000003 + - 597.25 +? !!python/tuple +- 127 +- 128 +- 208 +: - - 285.90000000000003 + - 597.25 + - - 287.85 + - 607.25 +? !!python/tuple +- 129 +- 131 +- 201 +: - - 270.65000000000003 + - 606.95 + - - 296.85 + - 613.45 +? !!python/tuple +- 130 +- 129 +- 202 +: - - 260.65000000000003 + - 604.7 + - - 270.65000000000003 + - 606.95 +? !!python/tuple +- 131 +- 132 +- 197 +: - - 296.85 + - 613.45 + - - 306.85 + - 616.45 +? !!python/tuple +- 132 +- 93 +- 196 +: - - 306.85 + - 616.45 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 133 +- 6 +- 228 +: - - 207.55 + - 580.4 + - - 218.0 + - 576.9 +? !!python/tuple +- 134 +- 133 +- 222 +: - - 197.55 + - 579.4 + - - 207.55 + - 580.4 +? !!python/tuple +- 135 +- 134 +- 225 +: - - 187.55 + - 578.4 + - - 197.55 + - 579.4 +? !!python/tuple +- 135 +- 135 +- 226 +: - - 187.55 + - 578.4 + - - 187.55 + - 578.4 +? !!python/tuple +- 136 +- 62 +- 243 +: - - 433.25 + - 569.6 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 137 +- 137 +- 242 +: - - 368.95000000000005 + - 570.4 + - - 368.95000000000005 + - 570.4 +? !!python/tuple +- 138 +- 57 +- 238 +: - - 383.45000000000005 + - 571.75 + - - 391.3 + - 573.1 +? !!python/tuple +- 139 +- 140 +- 223 +: - - 344.55 + - 578.65 + - - 343.6 + - 588.65 +? !!python/tuple +- 140 +- 141 +- 215 +: - - 343.6 + - 588.65 + - - 342.65000000000003 + - 598.65 +? !!python/tuple +- 141 +- 142 +- 207 +: - - 342.65000000000003 + - 598.65 + - - 341.70000000000005 + - 608.6500000000001 +? !!python/tuple +- 142 +- 4 +- 200 +: - - 341.70000000000005 + - 608.6500000000001 + - - 340.05 + - 622.0 +? !!python/tuple +- 143 +- 143 +- 249 +: - - 472.5 + - 567.75 + - - 472.5 + - 567.75 +? !!python/tuple +- 144 +- 144 +- 256 +: - - 473.70000000000005 + - 553.2 + - - 473.70000000000005 + - 553.2 +? !!python/tuple +- 144 +- 144 +- 261 +: - - 473.70000000000005 + - 553.2 + - - 473.70000000000005 + - 553.2 +? !!python/tuple +- 145 +- 145 +- 259 +: - - 455.75 + - 550.4 + - - 455.75 + - 550.4 +? !!python/tuple +- 146 +- 62 +- 254 +: - - 445.75 + - 556.65 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 147 +- 46 +- 253 +: - - 407.45000000000005 + - 557.0 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 148 +- 148 +- 265 +: - - 473.85 + - 543.65 + - - 473.85 + - 543.65 +? !!python/tuple +- 148 +- 148 +- 271 +: - - 473.85 + - 543.65 + - - 473.85 + - 543.65 +? !!python/tuple +- 149 +- 150 +- 270 +: - - 349.3 + - 543.7 + - - 348.35 + - 553.7 +? !!python/tuple +- 150 +- 7 +- 255 +: - - 348.35 + - 553.7 + - - 345.3 + - 568.1 +? !!python/tuple +- 151 +- 152 +- 273 +: - - 370.6 + - 542.4 + - - 380.6 + - 543.35 +? !!python/tuple +- 152 +- 153 +- 272 +: - - 380.6 + - 543.35 + - - 390.6 + - 544.3000000000001 +? !!python/tuple +- 153 +- 154 +- 269 +: - - 390.6 + - 544.3000000000001 + - - 400.6 + - 545.2 +? !!python/tuple +- 154 +- 94 +- 268 +: - - 400.6 + - 545.2 + - - 408.45000000000005 + - 546.5 +? !!python/tuple +- 155 +- 156 +- 274 +: - - 239.4 + - 541.0 + - - 238.4 + - 551.0 +? !!python/tuple +- 156 +- 157 +- 257 +: - - 238.4 + - 551.0 + - - 237.45000000000002 + - 561.0 +? !!python/tuple +- 157 +- 158 +- 250 +: - - 237.45000000000002 + - 561.0 + - - 236.45000000000002 + - 571.0 +? !!python/tuple +- 158 +- 21 +- 239 +: - - 236.45000000000002 + - 571.0 + - - 235.15 + - 578.5 +? !!python/tuple +- 159 +- 160 +- 299 +: - - 377.5 + - 532.65 + - - 387.5 + - 533.5 +? !!python/tuple +- 160 +- 161 +- 295 +: - - 387.5 + - 533.5 + - - 397.5 + - 534.35 +? !!python/tuple +- 161 +- 162 +- 293 +: - - 397.5 + - 534.35 + - - 407.5 + - 535.2 +? !!python/tuple +- 162 +- 80 +- 292 +: - - 407.5 + - 535.2 + - - 416.95000000000005 + - 536.1 +? !!python/tuple +- 163 +- 96 +- 300 +: - - 254.05 + - 532.65 + - - 263.7 + - 533.15 +? !!python/tuple +- 164 +- 165 +- 281 +: - - 338.6 + - 537.6 + - - 337.90000000000003 + - 547.6 +? !!python/tuple +- 165 +- 166 +- 264 +: - - 337.90000000000003 + - 547.6 + - - 337.55 + - 557.6 +? !!python/tuple +- 166 +- 81 +- 252 +: - - 337.55 + - 557.6 + - - 342.35 + - 567.25 +? !!python/tuple +- 167 +- 168 +- 332 +: - - 359.05 + - 516.1 + - - 366.65000000000003 + - 519.45 +? !!python/tuple +- 167 +- 174 +- 333 +: - - 359.05 + - 516.1 + - - 426.65000000000003 + - 524.7 +? !!python/tuple +- 168 +- 169 +- 326 +: - - 366.65000000000003 + - 519.45 + - - 376.65000000000003 + - 520.35 +? !!python/tuple +- 169 +- 170 +- 324 +: - - 376.65000000000003 + - 520.35 + - - 386.65000000000003 + - 521.25 +? !!python/tuple +- 170 +- 171 +- 322 +: - - 386.65000000000003 + - 521.25 + - - 396.65000000000003 + - 522.2 +? !!python/tuple +- 171 +- 172 +- 320 +: - - 396.65000000000003 + - 522.2 + - - 406.65000000000003 + - 523.1 +? !!python/tuple +- 172 +- 173 +- 318 +: - - 406.65000000000003 + - 523.1 + - - 416.65000000000003 + - 524.0 +? !!python/tuple +- 173 +- 174 +- 317 +: - - 416.65000000000003 + - 524.0 + - - 426.65000000000003 + - 524.7 +? !!python/tuple +- 175 +- 84 +- 342 +: - - 352.70000000000005 + - 509.9 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 175 +- 176 +- 343 +: - - 352.70000000000005 + - 509.9 + - - 364.90000000000003 + - 511.20000000000005 +? !!python/tuple +- 176 +- 177 +- 340 +: - - 364.90000000000003 + - 511.20000000000005 + - - 374.90000000000003 + - 512.35 +? !!python/tuple +- 177 +- 178 +- 337 +: - - 374.90000000000003 + - 512.35 + - - 384.90000000000003 + - 513.5 +? !!python/tuple +- 178 +- 179 +- 336 +: - - 384.90000000000003 + - 513.5 + - - 394.90000000000003 + - 514.65 +? !!python/tuple +- 179 +- 180 +- 335 +: - - 394.90000000000003 + - 514.65 + - - 404.90000000000003 + - 515.8000000000001 +? !!python/tuple +- 180 +- 182 +- 334 +: - - 404.90000000000003 + - 515.8000000000001 + - - 413.40000000000003 + - 516.75 +? !!python/tuple +- 181 +- 75 +- 330 +: - - 423.40000000000003 + - 517.9 + - - 434.6 + - 519.35 +? !!python/tuple +- 182 +- 181 +- 331 +: - - 413.40000000000003 + - 516.75 + - - 423.40000000000003 + - 517.9 +? !!python/tuple +- 183 +- 184 +- 328 +: - - 285.35 + - 518.3000000000001 + - - 284.45 + - 528.3000000000001 +? !!python/tuple +- 185 +- 186 +- 310 +: - - 280.35 + - 535.15 + - - 288.05 + - 536.0 +? !!python/tuple +- 186 +- 187 +- 289 +: - - 288.05 + - 536.0 + - - 298.05 + - 536.85 +? !!python/tuple +- 187 +- 187 +- 302 +: - - 298.05 + - 536.85 + - - 298.05 + - 536.85 +? !!python/tuple +- 188 +- 189 +- 346 +: - - 338.8 + - 505.55000000000007 + - - 336.85 + - 515.5 +? !!python/tuple +- 188 +- 189 +- 347 +: - - 338.8 + - 505.55000000000007 + - - 336.85 + - 515.5 +? !!python/tuple +- 190 +- 191 +- 354 +: - - 297.20000000000005 + - 502.80000000000007 + - - 307.20000000000005 + - 503.75 +? !!python/tuple +- 191 +- 191 +- 352 +: - - 307.20000000000005 + - 503.75 + - - 307.20000000000005 + - 503.75 +? !!python/tuple +- 192 +- 193 +- 351 +: - - 319.6 + - 504.20000000000005 + - - 329.6 + - 504.9 +? !!python/tuple +- 193 +- 193 +- 349 +: - - 329.6 + - 504.9 + - - 329.6 + - 504.9 +? !!python/tuple +- 194 +- 84 +- 338 +: - - 343.85 + - 511.6 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 195 +- 196 +- 364 +: - - 256.8 + - 498.85 + - - 266.8 + - 500.40000000000003 +? !!python/tuple +- 196 +- 48 +- 359 +: - - 266.8 + - 500.40000000000003 + - - 276.85 + - 501.45000000000005 +? !!python/tuple +- 196 +- 197 +- 358 +: - - 266.8 + - 500.40000000000003 + - - 265.85 + - 510.35 +? !!python/tuple +- 197 +- 198 +- 341 +: - - 265.85 + - 510.35 + - - 264.85 + - 520.35 +? !!python/tuple +- 198 +- 96 +- 323 +: - - 264.85 + - 520.35 + - - 263.7 + - 533.15 +? !!python/tuple +- 199 +- 200 +- 371 +: - - 368.95000000000005 + - 496.55 + - - 378.95000000000005 + - 497.40000000000003 +? !!python/tuple +- 200 +- 85 +- 369 +: - - 378.95000000000005 + - 497.40000000000003 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 201 +- 38 +- 374 +: - - 335.6 + - 493.65000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 202 +- 203 +- 370 +: - - 227.0 + - 500.05 + - - 222.4 + - 510.9 +? !!python/tuple +- 202 +- 209 +- 377 +: - - 227.0 + - 500.05 + - - 236.0 + - 506.15 +? !!python/tuple +- 203 +- 204 +- 339 +: - - 222.4 + - 510.9 + - - 221.4 + - 520.9 +? !!python/tuple +- 204 +- 37 +- 321 +: - - 221.4 + - 520.9 + - - 235.8 + - 532.1 +? !!python/tuple +- 205 +- 206 +- 305 +: - - 221.20000000000002 + - 530.9 + - - 219.45000000000002 + - 540.9 +? !!python/tuple +- 206 +- 207 +- 275 +: - - 219.45000000000002 + - 540.9 + - - 218.45000000000002 + - 550.9 +? !!python/tuple +- 207 +- 208 +- 258 +: - - 218.45000000000002 + - 550.9 + - - 217.5 + - 560.9 +? !!python/tuple +- 209 +- 60 +- 362 +: - - 236.0 + - 506.15 + - - 246.8 + - 498.55 +? !!python/tuple +- 210 +- 211 +- 345 +: - - 245.70000000000002 + - 507.75 + - - 244.9 + - 517.75 +? !!python/tuple +- 211 +- 25 +- 329 +: - - 244.9 + - 517.75 + - - 243.55 + - 531.15 +? !!python/tuple +- 212 +- 213 +- 379 +: - - 302.3 + - 490.6 + - - 312.3 + - 491.5 +? !!python/tuple +- 212 +- 247 +- 659 +: - - 302.533203125 + - 490.032958984375 + - - 316.3983154296875 + - 449.4606018066406 +? !!python/tuple +- 213 +- 26 +- 376 +: - - 312.3 + - 491.5 + - - 325.1 + - 492.05 +? !!python/tuple +- 214 +- 215 +- 383 +: - - 269.45 + - 487.70000000000005 + - - 279.45 + - 488.6 +? !!python/tuple +- 215 +- 39 +- 382 +: - - 279.45 + - 488.6 + - - 291.85 + - 489.0 +? !!python/tuple +- 216 +- 86 +- 387 +: - - 242.25 + - 485.15000000000003 + - - 258.95 + - 486.1 +? !!python/tuple +- 217 +- 218 +- 398 +: - - 427.0 + - 469.35 + - - 426.20000000000005 + - 479.35 +? !!python/tuple +- 218 +- 219 +- 391 +: - - 426.20000000000005 + - 479.35 + - - 425.35 + - 489.35 +? !!python/tuple +- 219 +- 220 +- 380 +: - - 425.35 + - 489.35 + - - 424.55 + - 499.35 +? !!python/tuple +- 221 +- 223 +- 360 +: - - 415.6 + - 500.5 + - - 436.85 + - 504.75 +? !!python/tuple +- 222 +- 221 +- 361 +: - - 405.6 + - 499.70000000000005 + - - 415.6 + - 500.5 +? !!python/tuple +- 224 +- 223 +- 348 +: - - 429.40000000000003 + - 507.35 + - - 436.85 + - 504.75 +? !!python/tuple +- 225 +- 224 +- 350 +: - - 399.40000000000003 + - 504.5 + - - 429.40000000000003 + - 507.35 +? !!python/tuple +- 226 +- 227 +- 406 +: - - 438.45000000000005 + - 459.65000000000003 + - - 448.45000000000005 + - 460.20000000000005 +? !!python/tuple +- 227 +- 227 +- 405 +: - - 448.45000000000005 + - 460.20000000000005 + - - 448.45000000000005 + - 460.20000000000005 +? !!python/tuple +- 228 +- 229 +- 400 +: - - 394.0 + - 466.65000000000003 + - - 393.20000000000005 + - 476.65000000000003 +? !!python/tuple +- 229 +- 230 +- 393 +: - - 393.20000000000005 + - 476.65000000000003 + - - 392.40000000000003 + - 486.65000000000003 +? !!python/tuple +- 230 +- 85 +- 384 +: - - 392.40000000000003 + - 486.65000000000003 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 231 +- 232 +- 411 +: - - 405.35 + - 456.95000000000005 + - - 415.35 + - 457.75 +? !!python/tuple +- 232 +- 66 +- 410 +: - - 415.35 + - 457.75 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 233 +- 234 +- 402 +: - - 360.90000000000003 + - 464.0 + - - 360.1 + - 474.0 +? !!python/tuple +- 234 +- 235 +- 395 +: - - 360.1 + - 474.0 + - - 359.25 + - 484.0 +? !!python/tuple +- 235 +- 72 +- 388 +: - - 359.25 + - 484.0 + - - 358.45000000000005 + - 495.6 +? !!python/tuple +- 236 +- 237 +- 416 +: - - 372.35 + - 454.3 + - - 382.35 + - 455.1 +? !!python/tuple +- 237 +- 0 +- 415 +: - - 382.35 + - 455.1 + - - 394.8 + - 456.1 +? !!python/tuple +- 238 +- 239 +- 404 +: - - 327.90000000000003 + - 461.1 + - - 327.0 + - 471.1 +? !!python/tuple +- 239 +- 240 +- 397 +: - - 327.0 + - 471.1 + - - 326.20000000000005 + - 481.1 +? !!python/tuple +- 240 +- 26 +- 390 +: - - 326.20000000000005 + - 481.1 + - - 325.1 + - 492.05 +? !!python/tuple +- 241 +- 242 +- 421 +: - - 339.40000000000003 + - 451.55 + - - 349.40000000000003 + - 452.40000000000003 +? !!python/tuple +- 242 +- 40 +- 419 +: - - 349.40000000000003 + - 452.40000000000003 + - - 361.85 + - 453.5 +? !!python/tuple +- 243 +- 244 +- 409 +: - - 294.90000000000003 + - 457.95000000000005 + - - 293.95 + - 467.95000000000005 +? !!python/tuple +- 244 +- 245 +- 399 +: - - 293.95 + - 467.95000000000005 + - - 293.0 + - 477.95000000000005 +? !!python/tuple +- 245 +- 39 +- 392 +: - - 293.0 + - 477.95000000000005 + - - 291.85 + - 489.0 +? !!python/tuple +- 246 +- 240 +- 660 +: - - 306.3183288574219 + - 448.5001525878906 + - - 326.6719970703125 + - 480.9545593261719 +? !!python/tuple +- 247 +- 11 +- 424 +: - - 316.25 + - 449.45000000000005 + - - 328.85 + - 450.6 +? !!python/tuple +- 248 +- 249 +- 414 +: - - 261.85 + - 454.85 + - - 260.95 + - 464.85 +? !!python/tuple +- 249 +- 250 +- 401 +: - - 260.95 + - 464.85 + - - 260.1 + - 474.85 +? !!python/tuple +- 250 +- 86 +- 394 +: - - 260.1 + - 474.85 + - - 258.95 + - 486.1 +? !!python/tuple +- 251 +- 252 +- 431 +: - - 273.35 + - 445.25 + - - 283.35 + - 446.25 +? !!python/tuple +- 252 +- 28 +- 429 +: - - 283.35 + - 446.25 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 253 +- 254 +- 420 +: - - 226.10000000000002 + - 451.6 + - - 225.20000000000002 + - 461.6 +? !!python/tuple +- 254 +- 255 +- 403 +: - - 225.20000000000002 + - 461.6 + - - 224.25 + - 471.6 +? !!python/tuple +- 255 +- 256 +- 396 +: - - 224.25 + - 471.6 + - - 224.20000000000002 + - 481.6 +? !!python/tuple +- 256 +- 65 +- 389 +: - - 224.20000000000002 + - 481.6 + - - 232.47743225097656 + - 490.1767883300781 +? !!python/tuple +- 257 +- 258 +- 436 +: - - 238.0 + - 441.90000000000003 + - - 248.0 + - 442.90000000000003 +? !!python/tuple +- 258 +- 1 +- 435 +: - - 248.0 + - 442.90000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 259 +- 12 +- 456 +: - - 430.3 + - 428.1 + - - 431.1 + - 417.6 +? !!python/tuple +- 259 +- 260 +- 447 +: - - 430.3 + - 428.1 + - - 429.55 + - 438.1 +? !!python/tuple +- 260 +- 261 +- 440 +: - - 429.55 + - 438.1 + - - 428.75 + - 448.1 +? !!python/tuple +- 261 +- 66 +- 425 +: - - 428.75 + - 448.1 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 262 +- 263 +- 454 +: - - 441.55 + - 418.5 + - - 451.55 + - 419.25 +? !!python/tuple +- 263 +- 263 +- 455 +: - - 451.55 + - 419.25 + - - 451.55 + - 419.25 +? !!python/tuple +- 264 +- 265 +- 449 +: - - 397.35 + - 425.5 + - - 396.5 + - 435.5 +? !!python/tuple +- 265 +- 266 +- 442 +: - - 396.5 + - 435.5 + - - 395.70000000000005 + - 445.5 +? !!python/tuple +- 266 +- 0 +- 430 +: - - 395.70000000000005 + - 445.5 + - - 394.8 + - 456.1 +? !!python/tuple +- 267 +- 268 +- 460 +: - - 408.75 + - 415.90000000000003 + - - 418.75 + - 416.65000000000003 +? !!python/tuple +- 268 +- 12 +- 459 +: - - 418.75 + - 416.65000000000003 + - - 431.1 + - 417.6 +? !!python/tuple +- 269 +- 270 +- 451 +: - - 364.3 + - 422.90000000000003 + - - 363.5 + - 432.90000000000003 +? !!python/tuple +- 270 +- 271 +- 444 +: - - 363.5 + - 432.90000000000003 + - - 362.65000000000003 + - 442.90000000000003 +? !!python/tuple +- 271 +- 40 +- 434 +: - - 362.65000000000003 + - 442.90000000000003 + - - 361.85 + - 453.5 +? !!python/tuple +- 272 +- 273 +- 465 +: - - 375.6 + - 413.20000000000005 + - - 385.6 + - 414.0 +? !!python/tuple +- 273 +- 13 +- 464 +: - - 385.6 + - 414.0 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 274 +- 275 +- 453 +: - - 331.75 + - 420.1 + - - 330.8 + - 430.1 +? !!python/tuple +- 275 +- 276 +- 446 +: - - 330.8 + - 430.1 + - - 329.8 + - 440.1 +? !!python/tuple +- 276 +- 11 +- 439 +: - - 329.8 + - 440.1 + - - 328.85 + - 450.6 +? !!python/tuple +- 277 +- 278 +- 470 +: - - 343.3 + - 410.5 + - - 353.3 + - 411.35 +? !!python/tuple +- 278 +- 14 +- 468 +: - - 353.3 + - 411.35 + - - 365.1 + - 412.35 +? !!python/tuple +- 279 +- 280 +- 458 +: - - 298.75 + - 416.70000000000005 + - - 297.8 + - 426.70000000000005 +? !!python/tuple +- 280 +- 281 +- 448 +: - - 297.8 + - 426.70000000000005 + - - 296.85 + - 436.70000000000005 +? !!python/tuple +- 281 +- 28 +- 441 +: - - 296.85 + - 436.70000000000005 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 282 +- 283 +- 474 +: - - 310.40000000000003 + - 407.35 + - - 320.40000000000003 + - 408.3 +? !!python/tuple +- 283 +- 30 +- 473 +: - - 320.40000000000003 + - 408.3 + - - 332.75 + - 409.55 +? !!python/tuple +- 284 +- 285 +- 463 +: - - 265.40000000000003 + - 413.65000000000003 + - - 264.55 + - 423.65000000000003 +? !!python/tuple +- 285 +- 286 +- 450 +: - - 264.55 + - 423.65000000000003 + - - 263.7 + - 433.65000000000003 +? !!python/tuple +- 286 +- 1 +- 443 +: - - 263.7 + - 433.65000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 287 +- 288 +- 479 +: - - 276.65000000000003 + - 404.05 + - - 286.65000000000003 + - 405.0 +? !!python/tuple +- 288 +- 31 +- 478 +: - - 286.65000000000003 + - 405.0 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 289 +- 290 +- 469 +: - - 229.65 + - 410.85 + - - 228.8 + - 420.85 +? !!python/tuple +- 290 +- 291 +- 452 +: - - 228.8 + - 420.85 + - - 227.95000000000002 + - 430.85 +? !!python/tuple +- 291 +- 77 +- 445 +: - - 227.95000000000002 + - 430.85 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 292 +- 293 +- 483 +: - - 241.45000000000002 + - 401.05 + - - 251.45 + - 401.85 +? !!python/tuple +- 293 +- 32 +- 482 +: - - 251.45 + - 401.85 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 294 +- 15 +- 506 +: - - 401.05 + - 380.05 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 295 +- 294 +- 498 +: - - 400.25 + - 390.05 + - - 401.05 + - 380.05 +? !!python/tuple +- 296 +- 13 +- 485 +: - - 399.40000000000003 + - 400.05 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 296 +- 295 +- 491 +: - - 399.40000000000003 + - 400.05 + - - 400.25 + - 390.05 +? !!python/tuple +- 297 +- 298 +- 500 +: - - 368.05 + - 377.05 + - - 367.20000000000005 + - 387.05 +? !!python/tuple +- 298 +- 299 +- 493 +: - - 367.20000000000005 + - 387.05 + - - 366.40000000000003 + - 397.05 +? !!python/tuple +- 299 +- 14 +- 487 +: - - 366.40000000000003 + - 397.05 + - - 365.1 + - 412.35 +? !!python/tuple +- 300 +- 301 +- 510 +: - - 379.45000000000005 + - 367.45000000000005 + - - 389.45000000000005 + - 368.35 +? !!python/tuple +- 301 +- 15 +- 508 +: - - 389.45000000000005 + - 368.35 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 302 +- 303 +- 503 +: - - 336.35 + - 374.15000000000003 + - - 335.3 + - 384.15000000000003 +? !!python/tuple +- 303 +- 304 +- 496 +: - - 335.3 + - 384.15000000000003 + - - 334.3 + - 394.15000000000003 +? !!python/tuple +- 304 +- 30 +- 489 +: - - 334.3 + - 394.15000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 305 +- 306 +- 516 +: - - 347.8 + - 364.6 + - - 357.8 + - 365.55 +? !!python/tuple +- 306 +- 2 +- 514 +: - - 357.8 + - 365.55 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 307 +- 308 +- 504 +: - - 303.15000000000003 + - 371.05 + - - 302.15000000000003 + - 381.05 +? !!python/tuple +- 308 +- 309 +- 497 +: - - 302.15000000000003 + - 381.05 + - - 301.20000000000005 + - 391.05 +? !!python/tuple +- 309 +- 31 +- 490 +: - - 301.20000000000005 + - 391.05 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 310 +- 311 +- 521 +: - - 314.65000000000003 + - 361.55 + - - 324.65000000000003 + - 362.5 +? !!python/tuple +- 311 +- 52 +- 519 +: - - 324.65000000000003 + - 362.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 312 +- 313 +- 509 +: - - 269.25 + - 367.70000000000005 + - - 268.40000000000003 + - 377.70000000000005 +? !!python/tuple +- 313 +- 314 +- 499 +: - - 268.40000000000003 + - 377.70000000000005 + - - 267.55 + - 387.70000000000005 +? !!python/tuple +- 314 +- 32 +- 492 +: - - 267.55 + - 387.70000000000005 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 315 +- 316 +- 525 +: - - 281.6 + - 358.45000000000005 + - - 291.6 + - 359.40000000000003 +? !!python/tuple +- 316 +- 16 +- 524 +: - - 291.6 + - 359.40000000000003 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 318 +- 317 +- 536 +: - - 433.35 + - 355.05 + - - 434.3 + - 345.05 +? !!python/tuple +- 319 +- 318 +- 529 +: - - 432.40000000000003 + - 365.05 + - - 433.35 + - 355.05 +? !!python/tuple +- 319 +- 322 +- 515 +: - - 432.40000000000003 + - 365.05 + - - 434.40000000000003 + - 376.8 +? !!python/tuple +- 321 +- 320 +- 505 +: - - 418.05 + - 370.85 + - - 428.05 + - 371.70000000000005 +? !!python/tuple +- 323 +- 322 +- 501 +: - - 433.65000000000003 + - 386.8 + - - 434.40000000000003 + - 376.8 +? !!python/tuple +- 324 +- 323 +- 494 +: - - 432.85 + - 396.8 + - - 433.65000000000003 + - 386.8 +? !!python/tuple +- 325 +- 324 +- 488 +: - - 432.05 + - 406.8 + - - 432.85 + - 396.8 +? !!python/tuple +- 327 +- 326 +- 538 +: - - 403.5 + - 351.70000000000005 + - - 405.15000000000003 + - 341.85 +? !!python/tuple +- 328 +- 327 +- 531 +: - - 402.65000000000003 + - 361.70000000000005 + - - 403.5 + - 351.70000000000005 +? !!python/tuple +- 330 +- 329 +- 539 +: - - 370.35 + - 349.05 + - - 371.95000000000005 + - 339.15000000000003 +? !!python/tuple +- 331 +- 332 +- 542 +: - - 340.5 + - 336.75 + - - 339.0 + - 346.70000000000005 +? !!python/tuple +- 332 +- 52 +- 534 +: - - 339.0 + - 346.70000000000005 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 333 +- 334 +- 537 +: - - 305.85 + - 341.8 + - - 304.95000000000005 + - 351.8 +? !!python/tuple +- 334 +- 16 +- 530 +: - - 304.95000000000005 + - 351.8 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 335 +- 336 +- 540 +: - - 272.35 + - 338.55 + - - 271.55 + - 348.55 +? !!python/tuple +- 336 +- 88 +- 533 +: - - 271.55 + - 348.55 + - - 271.1 + - 357.25 +? !!python/tuple +- 337 +- 338 +- 546 +: - - 283.65000000000003 + - 328.90000000000003 + - - 293.65000000000003 + - 329.90000000000003 +? !!python/tuple +- 338 +- 17 +- 544 +: - - 293.65000000000003 + - 329.90000000000003 + - - 306.1 + - 331.3 +? !!python/tuple +- 339 +- 340 +- 550 +: - - 253.10000000000002 + - 326.05 + - - 263.1 + - 326.95000000000005 +? !!python/tuple +- 340 +- 18 +- 549 +: - - 263.1 + - 326.95000000000005 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 341 +- 342 +- 557 +: - - 275.55 + - 299.3 + - - 274.8 + - 309.3 +? !!python/tuple +- 342 +- 343 +- 555 +: - - 274.8 + - 309.3 + - - 274.05 + - 319.3 +? !!python/tuple +- 343 +- 18 +- 553 +: - - 274.05 + - 319.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 344 +- 345 +- 561 +: - - 286.7 + - 289.3 + - - 296.7 + - 289.85 +? !!python/tuple +- 345 +- 346 +- 560 +: - - 296.7 + - 289.85 + - - 306.70000000000005 + - 290.45 +? !!python/tuple +- 346 +- 346 +- 559 +: - - 306.70000000000005 + - 290.45 + - - 306.70000000000005 + - 290.45 +? !!python/tuple +- 347 +- 348 +- 558 +: - - 239.70000000000002 + - 296.65000000000003 + - - 238.60000000000002 + - 306.65000000000003 +? !!python/tuple +- 348 +- 349 +- 556 +: - - 238.60000000000002 + - 306.65000000000003 + - - 237.5 + - 316.65000000000003 +? !!python/tuple +- 349 +- 350 +- 554 +: - - 237.5 + - 316.65000000000003 + - - 235.60000000000002 + - 336.65000000000003 +? !!python/tuple +- 350 +- 351 +- 541 +: - - 235.60000000000002 + - 336.65000000000003 + - - 234.8 + - 346.65000000000003 +? !!python/tuple +- 351 +- 352 +- 535 +: - - 234.8 + - 346.65000000000003 + - - 233.95000000000002 + - 356.65000000000003 +? !!python/tuple +- 352 +- 353 +- 528 +: - - 233.95000000000002 + - 356.65000000000003 + - - 233.20000000000002 + - 366.65000000000003 +? !!python/tuple +- 353 +- 354 +- 511 +: - - 233.20000000000002 + - 366.65000000000003 + - - 232.4 + - 376.65000000000003 +? !!python/tuple +- 354 +- 355 +- 502 +: - - 232.4 + - 376.65000000000003 + - - 231.60000000000002 + - 386.65000000000003 +? !!python/tuple +- 355 +- 87 +- 495 +: - - 231.60000000000002 + - 386.65000000000003 + - - 230.9 + - 400.35 +? !!python/tuple +- 356 +- 357 +- 565 +: - - 251.7 + - 286.90000000000003 + - - 261.7 + - 287.65000000000003 +? !!python/tuple +- 357 +- 29 +- 564 +: - - 261.7 + - 287.65000000000003 + - - 276.2 + - 288.8 +? !!python/tuple +- 358 +- 19 +- 577 +: - - 278.05 + - 259.95 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 359 +- 358 +- 572 +: - - 277.45 + - 269.95 + - - 278.05 + - 259.95 +? !!python/tuple +- 360 +- 29 +- 568 +: - - 276.8 + - 279.95 + - - 276.2 + - 288.8 +? !!python/tuple +- 360 +- 359 +- 570 +: - - 276.8 + - 279.95 + - - 277.45 + - 269.95 +? !!python/tuple +- 361 +- 362 +- 576 +: - - 289.15000000000003 + - 249.90000000000003 + - - 299.15000000000003 + - 250.5 +? !!python/tuple +- 362 +- 363 +- 574 +: - - 299.15000000000003 + - 250.5 + - - 309.15000000000003 + - 251.05 +? !!python/tuple +- 363 +- 363 +- 575 +: - - 309.15000000000003 + - 251.05 + - - 309.15000000000003 + - 251.05 +? !!python/tuple +- 364 +- 365 +- 573 +: - - 245.4 + - 257.55 + - - 242.95000000000002 + - 267.55 +? !!python/tuple +- 365 +- 366 +- 571 +: - - 242.95000000000002 + - 267.55 + - - 241.45000000000002 + - 277.55 +? !!python/tuple +- 366 +- 99 +- 569 +: - - 241.45000000000002 + - 277.55 + - - 241.25 + - 286.2 +? !!python/tuple +- 367 +- 368 +- 580 +: - - 259.3 + - 248.2 + - - 269.3 + - 248.8 +? !!python/tuple +- 368 +- 19 +- 579 +: - - 269.3 + - 248.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 369 +- 370 +- 595 +: - - 357.90000000000003 + - 213.4 + - - 367.90000000000003 + - 213.85000000000002 +? !!python/tuple +- 370 +- 90 +- 594 +: - - 367.90000000000003 + - 213.85000000000002 + - - 380.5 + - 214.0 +? !!python/tuple +- 371 +- 372 +- 599 +: - - 324.35 + - 211.9 + - - 334.35 + - 212.35000000000002 +? !!python/tuple +- 372 +- 27 +- 598 +: - - 334.35 + - 212.35000000000002 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 373 +- 20 +- 602 +: - - 280.7 + - 220.55 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 374 +- 373 +- 587 +: - - 280.05 + - 230.55 + - - 280.7 + - 220.55 +? !!python/tuple +- 375 +- 374 +- 585 +: - - 279.40000000000003 + - 240.55 + - - 280.05 + - 230.55 +? !!python/tuple +- 376 +- 377 +- 603 +: - - 291.05 + - 210.35000000000002 + - - 301.05 + - 210.8 +? !!python/tuple +- 377 +- 49 +- 601 +: - - 301.05 + - 210.8 + - - 313.85 + - 211.0 +? !!python/tuple +- 378 +- 79 +- 606 +: - - 255.8 + - 219.20000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 379 +- 378 +- 588 +: - - 253.2 + - 229.20000000000002 + - - 255.8 + - 219.20000000000002 +? !!python/tuple +- 380 +- 379 +- 586 +: - - 250.45 + - 239.20000000000002 + - - 253.2 + - 229.20000000000002 +? !!python/tuple +- 381 +- 20 +- 605 +: - - 268.40000000000003 + - 209.25 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 382 +- 70 +- 625 +: - - 414.6 + - 197.9 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 383 +- 382 +- 614 +: - - 414.05 + - 207.9 + - - 414.6 + - 197.9 +? !!python/tuple +- 383 +- 387 +- 608 +: - - 414.05 + - 207.9 + - - 420.95000000000005 + - 216.10000000000002 +? !!python/tuple +- 385 +- 384 +- 591 +: - - 401.05 + - 215.3 + - - 411.05 + - 215.70000000000002 +? !!python/tuple +- 386 +- 385 +- 592 +: - - 391.05 + - 214.85000000000002 + - - 401.05 + - 215.3 +? !!python/tuple +- 387 +- 388 +- 590 +: - - 420.95000000000005 + - 216.10000000000002 + - - 430.95000000000005 + - 216.5 +? !!python/tuple +- 388 +- 389 +- 589 +: - - 430.95000000000005 + - 216.5 + - - 440.95000000000005 + - 216.95000000000002 +? !!python/tuple +- 390 +- 390 +- 596 +: - - 447.35 + - 212.5 + - - 447.35 + - 212.5 +? !!python/tuple +- 390 +- 391 +- 611 +: - - 447.35 + - 212.5 + - - 447.85 + - 202.5 +? !!python/tuple +- 391 +- 98 +- 617 +: - - 447.85 + - 202.5 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 392 +- 393 +- 623 +: - - 424.8 + - 188.35000000000002 + - - 434.8 + - 190.4 +? !!python/tuple +- 393 +- 98 +- 621 +: - - 434.8 + - 190.4 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 394 +- 91 +- 636 +: - - 348.70000000000005 + - 184.95000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 395 +- 394 +- 627 +: - - 348.25 + - 194.95000000000002 + - - 348.70000000000005 + - 184.95000000000002 +? !!python/tuple +- 396 +- 395 +- 616 +: - - 347.75 + - 204.95000000000002 + - - 348.25 + - 194.95000000000002 +? !!python/tuple +- 397 +- 398 +- 635 +: - - 359.5 + - 175.3 + - - 369.5 + - 177.0 +? !!python/tuple +- 398 +- 399 +- 634 +: - - 369.5 + - 177.0 + - - 379.5 + - 179.05 +? !!python/tuple +- 399 +- 402 +- 633 +: - - 379.5 + - 179.05 + - - 393.6 + - 181.95000000000002 +? !!python/tuple +- 401 +- 400 +- 624 +: - - 381.20000000000005 + - 197.9 + - - 381.70000000000005 + - 187.9 +? !!python/tuple +- 402 +- 403 +- 630 +: - - 393.6 + - 181.95000000000002 + - - 403.6 + - 184.0 +? !!python/tuple +- 403 +- 70 +- 628 +: - - 403.6 + - 184.0 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 404 +- 67 +- 639 +: - - 315.15000000000003 + - 183.35000000000002 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 405 +- 404 +- 629 +: - - 314.70000000000005 + - 193.35000000000002 + - - 315.15000000000003 + - 183.35000000000002 +? !!python/tuple +- 406 +- 405 +- 618 +: - - 314.20000000000005 + - 203.35000000000002 + - - 314.70000000000005 + - 193.35000000000002 +? !!python/tuple +- 407 +- 51 +- 641 +: - - 325.90000000000003 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 408 +- 41 +- 644 +: - - 282.6 + - 181.25 + - - 283.0 + - 170.75 +? !!python/tuple +- 409 +- 408 +- 631 +: - - 282.05 + - 191.25 + - - 282.6 + - 181.25 +? !!python/tuple +- 410 +- 409 +- 620 +: - - 281.5 + - 201.25 + - - 282.05 + - 191.25 +? !!python/tuple +- 411 +- 412 +- 645 +: - - 293.5 + - 171.15 + - - 303.5 + - 171.65 +? !!python/tuple +- 412 +- 67 +- 643 +: - - 303.5 + - 171.65 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 413 +- 69 +- 648 +: - - 259.3 + - 179.65 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 414 +- 413 +- 632 +: - - 258.6 + - 189.65 + - - 259.3 + - 179.65 +? !!python/tuple +- 415 +- 414 +- 622 +: - - 257.95 + - 199.65 + - - 258.6 + - 189.65 +? !!python/tuple +- 416 +- 41 +- 647 +: - - 271.15000000000003 + - 170.0 + - - 283.0 + - 170.75 +? !!python/tuple +- 417 +- 418 +- 653 +: - - 293.1 + - 160.85000000000002 + - - 303.1 + - 163.0 +? !!python/tuple +- 418 +- 419 +- 652 +: - - 303.1 + - 163.0 + - - 313.1 + - 165.10000000000002 +? !!python/tuple +- 419 +- 420 +- 651 +: - - 313.1 + - 165.10000000000002 + - - 333.1 + - 169.3 +? !!python/tuple +- 420 +- 61 +- 649 +: - - 333.1 + - 169.3 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 421 +- 422 +- 658 +: - - 265.45 + - 155.05 + - - 276.05 + - 157.20000000000002 +? !!python/tuple +- 422 +- 71 +- 656 +: - - 276.05 + - 157.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 423 +- 239 +- 662 +: - - 315.40435791015625 + - 477.9844970703125 + - - 327.10369873046875 + - 470.9964599609375 +? !!python/tuple +- 424 +- 423 +- 661 +: - - 312.3125 + - 485.1031799316406 + - - 315.40435791015625 + - 477.9844970703125 diff --git a/output_yaml/edges_low_level.yaml b/output_yaml/edges_low_level.yaml new file mode 100644 index 0000000..a384410 --- /dev/null +++ b/output_yaml/edges_low_level.yaml @@ -0,0 +1,2320 @@ +? !!python/tuple +- 0 +- 66 +- 85 +: - - 394.8 + - 456.1 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 0 +- 85 +- 84 +: - - 394.8 + - 456.1 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 1 +- 28 +- 91 +: - - 262.8 + - 444.3 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 1 +- 28 +- 93 +: - - 262.8 + - 444.3 + - - 296.23443603515625 + - 446.56121826171875 +? !!python/tuple +- 1 +- 86 +- 90 +: - - 262.8 + - 444.3 + - - 258.95 + - 486.1 +? !!python/tuple +- 1 +- 86 +- 92 +: - - 262.8 + - 444.3 + - - 258.95 + - 486.1 +? !!python/tuple +- 2 +- 2 +- 119 +: - - 368.90000000000003 + - 366.5 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 2 +- 2 +- 123 +: - - 368.90000000000003 + - 366.5 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 2 +- 2 +- 129 +: - - 368.90000000000003 + - 366.5 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 2 +- 14 +- 109 +: - - 368.90000000000003 + - 366.5 + - - 365.1 + - 412.35 +? !!python/tuple +- 2 +- 14 +- 113 +: - - 368.90000000000003 + - 366.5 + - - 365.1 + - 412.35 +? !!python/tuple +- 2 +- 14 +- 119 +: - - 368.90000000000003 + - 366.5 + - - 365.1 + - 412.35 +? !!python/tuple +- 2 +- 15 +- 110 +: - - 368.90000000000003 + - 366.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 2 +- 15 +- 114 +: - - 368.90000000000003 + - 366.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 2 +- 15 +- 120 +: - - 368.90000000000003 + - 366.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 3 +- 3 +- 0 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 3 +- 3 +- 1 +: - - 407.40000000000003 + - 628.1500000000001 + - - 407.40000000000003 + - 628.1500000000001 +? !!python/tuple +- 5 +- 5 +- 12 +: - - 241.5 + - 586.1 + - - 241.5 + - 586.1 +? !!python/tuple +- 5 +- 42 +- 11 +: - - 241.5 + - 586.1 + - - 240.65 + - 593.3000000000001 +? !!python/tuple +- 6 +- 6 +- 16 +: - - 218.0 + - 576.9 + - - 218.0 + - 576.9 +? !!python/tuple +- 6 +- 21 +- 18 +: - - 218.0 + - 576.9 + - - 235.15 + - 578.5 +? !!python/tuple +- 7 +- 4 +- 28 +: - - 345.3 + - 568.1 + - - 340.05 + - 622.0 +? !!python/tuple +- 7 +- 34 +- 29 +: - - 345.3 + - 568.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 8 +- 24 +- 52 +: - - 363.20000000000005 + - 530.65 + - - 367.0 + - 531.5500000000001 +? !!python/tuple +- 9 +- 8 +- 59 +: - - 350.55 + - 525.8000000000001 + - - 363.20000000000005 + - 530.65 +? !!python/tuple +- 10 +- 38 +- 71 +: - - 347.75 + - 500.90000000000003 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 11 +- 40 +- 158 +: - - 329.2942810058594 + - 450.0257263183594 + - - 361.371337890625 + - 452.96978759765625 +? !!python/tuple +- 12 +- 12 +- 95 +: - - 431.1 + - 417.6 + - - 431.1 + - 417.6 +? !!python/tuple +- 12 +- 12 +- 97 +: - - 431.1 + - 417.6 + - - 431.1 + - 417.6 +? !!python/tuple +- 12 +- 66 +- 94 +: - - 431.1 + - 417.6 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 12 +- 66 +- 96 +: - - 431.1 + - 417.6 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 12 +- 103 +- 113 +: - - 431.1 + - 417.6 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 13 +- 0 +- 96 +: - - 398.20000000000005 + - 415.0 + - - 394.8 + - 456.1 +? !!python/tuple +- 13 +- 0 +- 98 +: - - 398.20000000000005 + - 415.0 + - - 394.8 + - 456.1 +? !!python/tuple +- 13 +- 12 +- 97 +: - - 398.20000000000005 + - 415.0 + - - 431.1 + - 417.6 +? !!python/tuple +- 13 +- 12 +- 99 +: - - 398.20000000000005 + - 415.0 + - - 431.1 + - 417.6 +? !!python/tuple +- 13 +- 15 +- 108 +: - - 398.20000000000005 + - 415.0 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 13 +- 15 +- 111 +: - - 398.20000000000005 + - 415.0 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 13 +- 15 +- 117 +: - - 398.20000000000005 + - 415.0 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 14 +- 13 +- 99 +: - - 365.1 + - 412.35 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 14 +- 13 +- 101 +: - - 365.1 + - 412.35 + - - 398.20000000000005 + - 415.0 +? !!python/tuple +- 14 +- 40 +- 98 +: - - 365.1 + - 412.35 + - - 361.85 + - 453.5 +? !!python/tuple +- 14 +- 40 +- 100 +: - - 365.1 + - 412.35 + - - 361.371337890625 + - 452.96978759765625 +? !!python/tuple +- 15 +- 15 +- 117 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 15 +- 118 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 15 +- 122 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 15 +- 128 +: - - 401.95000000000005 + - 369.5 + - - 401.95000000000005 + - 369.5 +? !!python/tuple +- 15 +- 103 +- 112 +: - - 401.95000000000005 + - 369.5 + - - 431.1551818847656 + - 371.0977783203125 +? !!python/tuple +- 15 +- 103 +- 118 +: - - 401.95000000000005 + - 369.5 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 16 +- 31 +- 113 +: - - 304.15000000000003 + - 360.5 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 16 +- 31 +- 117 +: - - 304.15000000000003 + - 360.5 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 16 +- 31 +- 123 +: - - 304.15000000000003 + - 360.5 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 16 +- 52 +- 114 +: - - 304.15000000000003 + - 360.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 16 +- 52 +- 118 +: - - 304.15000000000003 + - 360.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 16 +- 52 +- 124 +: - - 304.15000000000003 + - 360.5 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 17 +- 16 +- 121 +: - - 306.1 + - 331.3 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 17 +- 16 +- 125 +: - - 306.1 + - 331.3 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 17 +- 16 +- 131 +: - - 306.1 + - 331.3 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 17 +- 17 +- 122 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 17 +- 126 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 17 +- 17 +- 132 +: - - 306.1 + - 331.3 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 17 +- 124 +: - - 273.15000000000003 + - 328.0 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 17 +- 128 +: - - 273.15000000000003 + - 328.0 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 17 +- 134 +: - - 273.15000000000003 + - 328.0 + - - 306.1 + - 331.3 +? !!python/tuple +- 18 +- 88 +- 123 +: - - 273.15000000000003 + - 328.0 + - - 271.1 + - 357.25 +? !!python/tuple +- 18 +- 88 +- 127 +: - - 273.15000000000003 + - 328.0 + - - 271.1 + - 357.25 +? !!python/tuple +- 18 +- 88 +- 133 +: - - 273.15000000000003 + - 328.0 + - - 271.1 + - 357.25 +? !!python/tuple +- 19 +- 19 +- 132 +: - - 278.75 + - 249.40000000000003 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 19 +- 19 +- 136 +: - - 278.75 + - 249.40000000000003 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 19 +- 19 +- 142 +: - - 278.75 + - 249.40000000000003 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 19 +- 20 +- 137 +: - - 278.75 + - 249.40000000000003 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 19 +- 20 +- 141 +: - - 278.75 + - 249.40000000000003 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 19 +- 20 +- 147 +: - - 278.75 + - 249.40000000000003 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 20 +- 41 +- 150 +: - - 281.15000000000003 + - 210.05 + - - 283.0 + - 170.75 +? !!python/tuple +- 20 +- 41 +- 154 +: - - 281.15000000000003 + - 210.05 + - - 283.0 + - 170.75 +? !!python/tuple +- 20 +- 41 +- 160 +: - - 281.15000000000003 + - 210.05 + - - 283.0 + - 170.75 +? !!python/tuple +- 20 +- 49 +- 138 +: - - 281.15000000000003 + - 210.05 + - - 313.85 + - 211.0 +? !!python/tuple +- 20 +- 49 +- 142 +: - - 281.15000000000003 + - 210.05 + - - 313.85 + - 211.0 +? !!python/tuple +- 20 +- 49 +- 148 +: - - 281.15000000000003 + - 210.05 + - - 313.85 + - 211.0 +? !!python/tuple +- 21 +- 54 +- 14 +: - - 235.15 + - 578.5 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 24 +- 58 +- 57 +: - - 367.0 + - 531.5500000000001 + - - 432.75 + - 548.65 +? !!python/tuple +- 24 +- 80 +- 48 +: - - 367.0 + - 531.5500000000001 + - - 416.95000000000005 + - 536.1 +? !!python/tuple +- 25 +- 96 +- 49 +: - - 243.55 + - 531.15 + - - 263.7 + - 533.15 +? !!python/tuple +- 26 +- 38 +- 76 +: - - 325.7059631347656 + - 492.0518798828125 + - - 356.15000000000003 + - 498.95000000000005 +? !!python/tuple +- 27 +- 90 +- 135 +: - - 347.40000000000003 + - 212.5 + - - 380.5 + - 214.0 +? !!python/tuple +- 27 +- 90 +- 139 +: - - 347.40000000000003 + - 212.5 + - - 380.5 + - 214.0 +? !!python/tuple +- 27 +- 90 +- 145 +: - - 347.40000000000003 + - 212.5 + - - 380.5 + - 214.0 +? !!python/tuple +- 27 +- 91 +- 144 +: - - 347.40000000000003 + - 212.5 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 27 +- 91 +- 148 +: - - 347.40000000000003 + - 212.5 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 27 +- 91 +- 154 +: - - 347.40000000000003 + - 212.5 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 28 +- 11 +- 157 +: - - 296.23443603515625 + - 446.56121826171875 + - - 328.30914306640625 + - 449.5286865234375 +? !!python/tuple +- 28 +- 26 +- 90 +: - - 296.23443603515625 + - 446.56121826171875 + - - 325.7059631347656 + - 492.0518798828125 +? !!python/tuple +- 28 +- 28 +- 91 +: - - 296.23443603515625 + - 446.56121826171875 + - - 296.23443603515625 + - 446.56121826171875 +? !!python/tuple +- 28 +- 39 +- 88 +: - - 295.75 + - 447.45000000000005 + - - 291.85 + - 489.0 +? !!python/tuple +- 28 +- 39 +- 89 +: - - 296.23443603515625 + - 446.56121826171875 + - - 291.85 + - 489.0 +? !!python/tuple +- 29 +- 18 +- 127 +: - - 276.2 + - 288.8 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 29 +- 18 +- 131 +: - - 276.2 + - 288.8 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 29 +- 18 +- 137 +: - - 276.2 + - 288.8 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 29 +- 19 +- 131 +: - - 276.2 + - 288.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 29 +- 19 +- 135 +: - - 276.2 + - 288.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 29 +- 19 +- 141 +: - - 276.2 + - 288.8 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 29 +- 29 +- 128 +: - - 276.2 + - 288.8 + - - 276.2 + - 288.8 +? !!python/tuple +- 29 +- 29 +- 132 +: - - 276.2 + - 288.8 + - - 276.2 + - 288.8 +? !!python/tuple +- 29 +- 29 +- 138 +: - - 276.2 + - 288.8 + - - 276.2 + - 288.8 +? !!python/tuple +- 30 +- 11 +- 100 +: - - 332.75 + - 409.55 + - - 328.98284912109375 + - 449.8285217285156 +? !!python/tuple +- 30 +- 11 +- 102 +: - - 332.75 + - 409.55 + - - 329.2942810058594 + - 450.0257263183594 +? !!python/tuple +- 30 +- 14 +- 101 +: - - 332.75 + - 409.55 + - - 365.1 + - 412.35 +? !!python/tuple +- 30 +- 14 +- 103 +: - - 332.75 + - 409.55 + - - 365.1 + - 412.35 +? !!python/tuple +- 31 +- 28 +- 102 +: - - 299.90000000000003 + - 406.20000000000005 + - - 295.75 + - 447.45000000000005 +? !!python/tuple +- 31 +- 28 +- 104 +: - - 299.90000000000003 + - 406.20000000000005 + - - 296.23443603515625 + - 446.56121826171875 +? !!python/tuple +- 31 +- 30 +- 103 +: - - 299.90000000000003 + - 406.20000000000005 + - - 332.75 + - 409.55 +? !!python/tuple +- 31 +- 30 +- 105 +: - - 299.90000000000003 + - 406.20000000000005 + - - 332.75 + - 409.55 +? !!python/tuple +- 32 +- 1 +- 104 +: - - 266.2 + - 403.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 32 +- 1 +- 106 +: - - 266.2 + - 403.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 32 +- 31 +- 105 +: - - 266.2 + - 403.15000000000003 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 32 +- 31 +- 107 +: - - 266.2 + - 403.15000000000003 + - - 299.90000000000003 + - 406.20000000000005 +? !!python/tuple +- 33 +- 33 +- 7 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 33 +- 33 +- 9 +: - - 416.0 + - 593.35 + - - 416.0 + - 593.35 +? !!python/tuple +- 34 +- 34 +- 25 +: - - 359.0 + - 570.1 + - - 359.0 + - 570.1 +? !!python/tuple +- 34 +- 46 +- 27 +: - - 359.0 + - 570.1 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 37 +- 21 +- 46 +: - - 235.8 + - 532.1 + - - 235.15 + - 578.5 +? !!python/tuple +- 37 +- 25 +- 50 +: - - 235.8 + - 532.1 + - - 243.55 + - 531.15 +? !!python/tuple +- 38 +- 102 +- 82 +: - - 356.15000000000003 + - 498.95000000000005 + - - 425.0286865234375 + - 500.0166931152344 +? !!python/tuple +- 39 +- 26 +- 79 +: - - 291.85 + - 489.0 + - - 325.7059631347656 + - 492.0518798828125 +? !!python/tuple +- 40 +- 0 +- 87 +: - - 361.85 + - 453.5 + - - 394.8 + - 456.1 +? !!python/tuple +- 40 +- 0 +- 88 +: - - 361.371337890625 + - 452.96978759765625 + - - 394.8 + - 456.1 +? !!python/tuple +- 40 +- 40 +- 87 +: - - 361.371337890625 + - 452.96978759765625 + - - 361.371337890625 + - 452.96978759765625 +? !!python/tuple +- 40 +- 72 +- 86 +: - - 361.371337890625 + - 452.96978759765625 + - - 358.45000000000005 + - 495.6 +? !!python/tuple +- 41 +- 67 +- 151 +: - - 283.0 + - 170.75 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 41 +- 67 +- 155 +: - - 283.0 + - 170.75 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 41 +- 67 +- 161 +: - - 283.0 + - 170.75 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 41 +- 71 +- 154 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 71 +- 158 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 41 +- 71 +- 164 +: - - 283.0 + - 170.75 + - - 283.45 + - 159.8 +? !!python/tuple +- 42 +- 4 +- 8 +: - - 240.65 + - 593.3000000000001 + - - 340.05 + - 622.0 +? !!python/tuple +- 42 +- 64 +- 6 +: - - 240.65 + - 593.3000000000001 + - - 253.3 + - 602.25 +? !!python/tuple +- 43 +- 94 +- 44 +: - - 361.20000000000005 + - 533.0500000000001 + - - 408.45000000000005 + - 546.5 +? !!python/tuple +- 44 +- 100 +- 65 +: - - 285.8 + - 507.80000000000007 + - - 284.2564697265625 + - 532.891845703125 +? !!python/tuple +- 45 +- 45 +- 4 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 45 +- 45 +- 17 +: - - 444.25 + - 576.9 + - - 444.25 + - 576.9 +? !!python/tuple +- 46 +- 56 +- 23 +: - - 405.95000000000005 + - 573.4 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 47 +- 47 +- 33 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 34 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 35 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 36 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 37 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 40 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 47 +- 47 +- 42 +: - - 448.05 + - 549.45 + - - 448.05 + - 549.45 +? !!python/tuple +- 48 +- 44 +- 69 +: - - 276.85 + - 501.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 48 +- 59 +- 70 +: - - 276.85 + - 501.45000000000005 + - - 287.05 + - 502.45000000000005 +? !!python/tuple +- 49 +- 27 +- 136 +: - - 313.85 + - 211.0 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 49 +- 27 +- 140 +: - - 313.85 + - 211.0 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 49 +- 27 +- 146 +: - - 313.85 + - 211.0 + - - 347.40000000000003 + - 212.5 +? !!python/tuple +- 49 +- 67 +- 147 +: - - 313.85 + - 211.0 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 49 +- 67 +- 151 +: - - 313.85 + - 211.0 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 49 +- 67 +- 157 +: - - 313.85 + - 211.0 + - - 315.75 + - 172.85000000000002 +? !!python/tuple +- 52 +- 2 +- 112 +: - - 337.40000000000003 + - 363.65000000000003 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 52 +- 2 +- 116 +: - - 337.40000000000003 + - 363.65000000000003 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 52 +- 2 +- 122 +: - - 337.40000000000003 + - 363.65000000000003 + - - 368.90000000000003 + - 366.5 +? !!python/tuple +- 52 +- 30 +- 111 +: - - 337.40000000000003 + - 363.65000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 52 +- 30 +- 115 +: - - 337.40000000000003 + - 363.65000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 52 +- 30 +- 121 +: - - 337.40000000000003 + - 363.65000000000003 + - - 332.75 + - 409.55 +? !!python/tuple +- 52 +- 52 +- 120 +: - - 337.40000000000003 + - 363.65000000000003 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 52 +- 52 +- 124 +: - - 337.40000000000003 + - 363.65000000000003 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 52 +- 52 +- 130 +: - - 337.40000000000003 + - 363.65000000000003 + - - 337.40000000000003 + - 363.65000000000003 +? !!python/tuple +- 54 +- 5 +- 13 +: - - 237.9 + - 579.0500000000001 + - - 241.5 + - 586.1 +? !!python/tuple +- 54 +- 54 +- 22 +: - - 237.9 + - 579.0500000000001 + - - 237.9 + - 579.0500000000001 +? !!python/tuple +- 55 +- 45 +- 19 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.25 + - 576.9 +? !!python/tuple +- 55 +- 55 +- 5 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 55 +- 15 +: - - 436.95000000000005 + - 577.3000000000001 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 55 +- 62 +- 26 +: - - 436.95000000000005 + - 577.3000000000001 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 56 +- 55 +- 21 +: - - 423.45000000000005 + - 576.1 + - - 436.95000000000005 + - 577.3000000000001 +? !!python/tuple +- 56 +- 56 +- 20 +: - - 423.45000000000005 + - 576.1 + - - 423.45000000000005 + - 576.1 +? !!python/tuple +- 58 +- 58 +- 38 +: - - 432.75 + - 548.65 + - - 432.75 + - 548.65 +? !!python/tuple +- 58 +- 62 +- 39 +: - - 432.75 + - 548.65 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 59 +- 44 +- 67 +: - - 287.05 + - 502.45000000000005 + - - 285.8 + - 507.80000000000007 +? !!python/tuple +- 59 +- 63 +- 68 +: - - 287.05 + - 502.45000000000005 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 60 +- 96 +- 74 +: - - 246.8 + - 498.55 + - - 263.7 + - 533.15 +? !!python/tuple +- 61 +- 61 +- 146 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 61 +- 150 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 61 +- 156 +: - - 343.75 + - 173.10000000000002 + - - 343.75 + - 173.10000000000002 +? !!python/tuple +- 61 +- 91 +- 148 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 61 +- 91 +- 152 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 61 +- 91 +- 158 +: - - 343.75 + - 173.10000000000002 + - - 349.35 + - 174.45000000000002 +? !!python/tuple +- 62 +- 45 +- 24 +: - - 444.15000000000003 + - 570.75 + - - 444.25 + - 576.9 +? !!python/tuple +- 62 +- 62 +- 30 +: - - 444.15000000000003 + - 570.75 + - - 444.15000000000003 + - 570.75 +? !!python/tuple +- 63 +- 63 +- 60 +: - - 334.90000000000003 + - 527.1 + - - 334.90000000000003 + - 527.1 +? !!python/tuple +- 63 +- 92 +- 55 +: - - 334.90000000000003 + - 527.1 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 63 +- 97 +- 56 +: - - 334.90000000000003 + - 527.1 + - - 341.35 + - 527.7 +? !!python/tuple +- 64 +- 93 +- 10 +: - - 253.3 + - 602.25 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 65 +- 6 +- 77 +: - - 232.55 + - 490.6 + - - 218.0 + - 576.9 +? !!python/tuple +- 65 +- 60 +- 78 +: - - 232.55 + - 490.6 + - - 246.8 + - 498.55 +? !!python/tuple +- 65 +- 65 +- 92 +: - - 232.55 + - 490.6 + - - 232.55 + - 490.6 +? !!python/tuple +- 65 +- 65 +- 94 +: - - 232.55 + - 490.6 + - - 232.55 + - 490.6 +? !!python/tuple +- 65 +- 86 +- 81 +: - - 232.55 + - 490.6 + - - 258.95 + - 486.1 +? !!python/tuple +- 66 +- 66 +- 83 +: - - 427.90000000000003 + - 458.8 + - - 427.90000000000003 + - 458.8 +? !!python/tuple +- 67 +- 51 +- 149 +: - - 315.75 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 67 +- 51 +- 153 +: - - 315.75 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 67 +- 51 +- 159 +: - - 315.75 + - 172.85000000000002 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 69 +- 6 +- 0 +: - - 260.65000000000003 + - 169.20000000000002 + - - 218.0 + - 576.9 +? !!python/tuple +- 69 +- 41 +- 153 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.0 + - 170.75 +? !!python/tuple +- 69 +- 41 +- 157 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.0 + - 170.75 +? !!python/tuple +- 69 +- 41 +- 163 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.0 + - 170.75 +? !!python/tuple +- 69 +- 71 +- 156 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 69 +- 71 +- 160 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 69 +- 71 +- 166 +: - - 260.65000000000003 + - 169.20000000000002 + - - 283.45 + - 159.8 +? !!python/tuple +- 70 +- 98 +- 142 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 143 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 146 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 147 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 152 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 70 +- 98 +- 153 +: - - 415.25 + - 187.35000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 71 +- 51 +- 155 +: - - 283.45 + - 159.8 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 71 +- 51 +- 159 +: - - 283.45 + - 159.8 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 71 +- 51 +- 165 +: - - 283.45 + - 159.8 + - - 341.20000000000005 + - 173.5 +? !!python/tuple +- 72 +- 85 +- 75 +: - - 358.45000000000005 + - 495.6 + - - 391.45000000000005 + - 497.90000000000003 +? !!python/tuple +- 74 +- 7 +- 43 +: - - 350.15000000000003 + - 533.2 + - - 345.3 + - 568.1 +? !!python/tuple +- 74 +- 43 +- 45 +: - - 350.15000000000003 + - 533.2 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 75 +- 47 +- 61 +: - - 434.6 + - 519.35 + - - 448.05 + - 549.45 +? !!python/tuple +- 76 +- 10 +- 73 +: - - 345.05 + - 498.20000000000005 + - - 347.75 + - 500.90000000000003 +? !!python/tuple +- 76 +- 84 +- 66 +: - - 345.05 + - 498.20000000000005 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 77 +- 1 +- 93 +: - - 227.5 + - 441.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 77 +- 1 +- 95 +: - - 227.5 + - 441.15000000000003 + - - 262.8 + - 444.3 +? !!python/tuple +- 78 +- 18 +- 126 +: - - 242.60000000000002 + - 325.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 78 +- 18 +- 130 +: - - 242.60000000000002 + - 325.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 78 +- 18 +- 136 +: - - 242.60000000000002 + - 325.3 + - - 273.15000000000003 + - 328.0 +? !!python/tuple +- 78 +- 78 +- 125 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 78 +- 129 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 78 +- 78 +- 135 +: - - 242.60000000000002 + - 325.3 + - - 242.60000000000002 + - 325.3 +? !!python/tuple +- 79 +- 20 +- 140 +: - - 257.90000000000003 + - 208.75 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 79 +- 20 +- 144 +: - - 257.90000000000003 + - 208.75 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 79 +- 20 +- 150 +: - - 257.90000000000003 + - 208.75 + - - 281.15000000000003 + - 210.05 +? !!python/tuple +- 79 +- 69 +- 152 +: - - 257.90000000000003 + - 208.75 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 79 +- 69 +- 156 +: - - 257.90000000000003 + - 208.75 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 79 +- 69 +- 162 +: - - 257.90000000000003 + - 208.75 + - - 260.65000000000003 + - 169.20000000000002 +? !!python/tuple +- 81 +- 81 +- 54 +: - - 342.35 + - 567.25 + - - 342.35 + - 567.25 +? !!python/tuple +- 83 +- 43 +- 53 +: - - 350.25 + - 530.6 + - - 361.20000000000005 + - 533.0500000000001 +? !!python/tuple +- 83 +- 74 +- 51 +: - - 350.25 + - 530.6 + - - 350.15000000000003 + - 533.2 +? !!python/tuple +- 84 +- 9 +- 62 +: - - 347.90000000000003 + - 518.8000000000001 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 84 +- 75 +- 63 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 75 +- 64 +: - - 347.90000000000003 + - 518.8000000000001 + - - 434.6 + - 519.35 +? !!python/tuple +- 84 +- 84 +- 72 +: - - 347.90000000000003 + - 518.8000000000001 + - - 347.90000000000003 + - 518.8000000000001 +? !!python/tuple +- 86 +- 39 +- 80 +: - - 258.95 + - 486.1 + - - 291.85 + - 489.0 +? !!python/tuple +- 87 +- 32 +- 107 +: - - 230.9 + - 400.35 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 87 +- 32 +- 109 +: - - 230.9 + - 400.35 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 87 +- 77 +- 106 +: - - 230.9 + - 400.35 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 87 +- 77 +- 108 +: - - 230.9 + - 400.35 + - - 227.5 + - 441.15000000000003 +? !!python/tuple +- 88 +- 16 +- 116 +: - - 271.1 + - 357.25 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 88 +- 16 +- 120 +: - - 271.1 + - 357.25 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 88 +- 16 +- 126 +: - - 271.1 + - 357.25 + - - 304.15000000000003 + - 360.5 +? !!python/tuple +- 88 +- 32 +- 115 +: - - 271.1 + - 357.25 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 88 +- 32 +- 119 +: - - 271.1 + - 357.25 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 88 +- 32 +- 125 +: - - 271.1 + - 357.25 + - - 266.2 + - 403.15000000000003 +? !!python/tuple +- 89 +- 19 +- 134 +: - - 248.75 + - 247.10000000000002 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 89 +- 19 +- 138 +: - - 248.75 + - 247.10000000000002 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 89 +- 19 +- 144 +: - - 248.75 + - 247.10000000000002 + - - 278.75 + - 249.40000000000003 +? !!python/tuple +- 89 +- 79 +- 139 +: - - 248.75 + - 247.10000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 89 +- 79 +- 143 +: - - 248.75 + - 247.10000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 89 +- 79 +- 149 +: - - 248.75 + - 247.10000000000002 + - - 257.90000000000003 + - 208.75 +? !!python/tuple +- 89 +- 99 +- 133 +: - - 248.75 + - 247.10000000000002 + - - 241.25 + - 286.2 +? !!python/tuple +- 89 +- 99 +- 137 +: - - 248.75 + - 247.10000000000002 + - - 241.25 + - 286.2 +? !!python/tuple +- 89 +- 99 +- 143 +: - - 248.75 + - 247.10000000000002 + - - 241.25 + - 286.2 +? !!python/tuple +- 91 +- 70 +- 145 +: - - 349.35 + - 174.45000000000002 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 91 +- 70 +- 149 +: - - 349.35 + - 174.45000000000002 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 91 +- 70 +- 155 +: - - 349.35 + - 174.45000000000002 + - - 415.25 + - 187.35000000000002 +? !!python/tuple +- 92 +- 81 +- 32 +: - - 330.90000000000003 + - 567.0500000000001 + - - 342.35 + - 567.25 +? !!python/tuple +- 92 +- 92 +- 31 +: - - 330.90000000000003 + - 567.0500000000001 + - - 330.90000000000003 + - 567.0500000000001 +? !!python/tuple +- 93 +- 4 +- 2 +: - - 316.95000000000005 + - 618.75 + - - 340.05 + - 622.0 +? !!python/tuple +- 93 +- 93 +- 3 +: - - 316.95000000000005 + - 618.75 + - - 316.95000000000005 + - 618.75 +? !!python/tuple +- 94 +- 46 +- 41 +: - - 408.45000000000005 + - 546.5 + - - 405.95000000000005 + - 573.4 +? !!python/tuple +- 96 +- 100 +- 47 +: - - 263.7 + - 533.15 + - - 284.2564697265625 + - 532.891845703125 +? !!python/tuple +- 97 +- 9 +- 58 +: - - 341.35 + - 527.7 + - - 350.55 + - 525.8000000000001 +? !!python/tuple +- 98 +- 98 +- 141 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 98 +- 98 +- 145 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 98 +- 98 +- 151 +: - - 448.25 + - 194.60000000000002 + - - 448.25 + - 194.60000000000002 +? !!python/tuple +- 99 +- 29 +- 130 +: - - 241.25 + - 286.2 + - - 276.2 + - 288.8 +? !!python/tuple +- 99 +- 29 +- 134 +: - - 241.25 + - 286.2 + - - 276.2 + - 288.8 +? !!python/tuple +- 99 +- 29 +- 140 +: - - 241.25 + - 286.2 + - - 276.2 + - 288.8 +? !!python/tuple +- 99 +- 87 +- 129 +: - - 241.25 + - 286.2 + - - 230.9 + - 400.35 +? !!python/tuple +- 99 +- 87 +- 133 +: - - 241.25 + - 286.2 + - - 230.9 + - 400.35 +? !!python/tuple +- 99 +- 87 +- 139 +: - - 241.25 + - 286.2 + - - 230.9 + - 400.35 +? !!python/tuple +- 103 +- 103 +- 110 +: - - 431.1551818847656 + - 371.0977783203125 + - - 431.1551818847656 + - 371.0977783203125 +? !!python/tuple +- 103 +- 103 +- 111 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 103 +- 103 +- 112 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 103 +- 103 +- 114 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 103 +- 103 +- 115 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 103 +- 103 +- 116 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 103 +- 103 +- 121 +: - - 431.1551818847656 + - 371.0977783203125 + - - 431.1551818847656 + - 371.0977783203125 +? !!python/tuple +- 103 +- 103 +- 127 +: - - 432.0601806640625 + - 372.5963134765625 + - - 432.0601806640625 + - 372.5963134765625 +? !!python/tuple +- 104 +- 104 +- 110 +: - - 401.18572998046875 + - 387.29254150390625 + - - 401.18572998046875 + - 387.29254150390625 diff --git a/output_yaml/way_pts_edited.yaml b/output_yaml/way_pts_edited.yaml new file mode 100644 index 0000000..7086630 --- /dev/null +++ b/output_yaml/way_pts_edited.yaml @@ -0,0 +1,1269 @@ +0: +- 394.8 +- 456.1 +1: +- 262.5809631347656 +- 444.19354248046875 +2: +- 368.90000000000003 +- 366.5 +3: +- 407.40000000000003 +- 628.1500000000001 +4: +- 340.05 +- 622.0 +5: +- 241.5 +- 586.1 +6: +- 218.0 +- 576.9 +7: +- 345.3 +- 568.1 +8: +- 363.20000000000005 +- 530.65 +9: +- 350.55 +- 525.8000000000001 +10: +- 347.75 +- 500.90000000000003 +11: +- 329.0235290527344 +- 450.93743896484375 +12: +- 431.1 +- 417.6 +13: +- 398.20000000000005 +- 415.0 +14: +- 365.1 +- 412.35 +15: +- 401.95000000000005 +- 369.5 +16: +- 304.15000000000003 +- 360.5 +17: +- 306.1 +- 331.3 +18: +- 273.15000000000003 +- 328.0 +19: +- 278.75 +- 249.40000000000003 +20: +- 281.15000000000003 +- 210.05 +21: +- 235.15 +- 578.5 +22: +- 428.3 +- 545.8000000000001 +23: +- 441.0 +- 538.15 +24: +- 367.0 +- 531.5500000000001 +25: +- 243.55 +- 531.15 +26: +- 325.1 +- 492.05 +27: +- 347.40000000000003 +- 212.5 +28: +- 295.8104248046875 +- 447.5629577636719 +29: +- 276.2 +- 288.8 +30: +- 332.75 +- 409.55 +31: +- 299.90000000000003 +- 406.20000000000005 +32: +- 266.2 +- 403.15000000000003 +33: +- 416.0 +- 593.35 +34: +- 359.0 +- 570.1 +35: +- 429.8 +- 540.35 +36: +- 418.45000000000005 +- 539.7 +37: +- 235.8 +- 532.1 +38: +- 356.15000000000003 +- 498.95000000000005 +39: +- 291.85 +- 489.0 +40: +- 362.0938415527344 +- 453.5181579589844 +41: +- 283.0 +- 170.75 +42: +- 240.65 +- 593.3000000000001 +43: +- 361.20000000000005 +- 533.0500000000001 +44: +- 285.8 +- 507.80000000000007 +45: +- 444.25 +- 576.9 +46: +- 405.95000000000005 +- 573.4 +47: +- 448.05 +- 549.45 +48: +- 276.85 +- 501.45000000000005 +49: +- 313.85 +- 211.0 +50: +- 434.95000000000005 +- 537.45 +51: +- 341.20000000000005 +- 173.5 +52: +- 337.40000000000003 +- 363.65000000000003 +53: +- 442.35 +- 535.35 +54: +- 237.9 +- 579.0500000000001 +55: +- 436.95000000000005 +- 577.3000000000001 +56: +- 423.45000000000005 +- 576.1 +57: +- 391.3 +- 573.1 +58: +- 432.75 +- 548.65 +59: +- 287.05 +- 502.45000000000005 +60: +- 246.8 +- 498.55 +61: +- 343.75 +- 173.10000000000002 +62: +- 444.15000000000003 +- 570.75 +63: +- 334.90000000000003 +- 527.1 +64: +- 253.3 +- 602.25 +65: +- 232.55 +- 490.6 +66: +- 427.90000000000003 +- 458.8 +67: +- 315.75 +- 172.85000000000002 +68: +- 430.70000000000005 +- 537.3000000000001 +69: +- 260.65000000000003 +- 169.20000000000002 +70: +- 415.25 +- 187.35000000000002 +71: +- 283.45 +- 159.8 +72: +- 358.45000000000005 +- 495.6 +73: +- 427.3 +- 540.75 +74: +- 350.15000000000003 +- 533.2 +75: +- 434.6 +- 519.35 +76: +- 345.05 +- 498.20000000000005 +77: +- 227.5 +- 441.15000000000003 +78: +- 242.60000000000002 +- 325.3 +79: +- 257.90000000000003 +- 208.75 +80: +- 416.95000000000005 +- 536.1 +81: +- 342.35 +- 567.25 +82: +- 427.35 +- 537.4 +83: +- 350.25 +- 530.6 +84: +- 347.90000000000003 +- 518.8000000000001 +85: +- 391.45000000000005 +- 497.90000000000003 +86: +- 258.95 +- 486.1 +87: +- 230.9 +- 400.35 +88: +- 271.1 +- 357.25 +89: +- 248.75 +- 247.10000000000002 +90: +- 380.5 +- 214.0 +91: +- 349.35 +- 174.45000000000002 +92: +- 330.90000000000003 +- 567.0500000000001 +93: +- 316.95000000000005 +- 618.75 +94: +- 408.45000000000005 +- 546.5 +95: +- 416.0 +- 539.15 +96: +- 263.7 +- 533.15 +97: +- 341.35 +- 527.7 +98: +- 448.25 +- 194.60000000000002 +99: +- 241.25 +- 286.2 +100: +- 327.40000000000003 +- 621.5 +101: +- 312.55 +- 602.4 +102: +- 318.15000000000003 +- 611.2 +103: +- 446.05 +- 595.9 +104: +- 243.8 +- 601.65 +105: +- 234.05 +- 602.45 +106: +- 233.10000000000002 +- 612.45 +107: +- 237.45000000000002 +- 619.3000000000001 +108: +- 247.45 +- 620.2 +109: +- 257.45 +- 621.1500000000001 +110: +- 267.45 +- 622.1 +111: +- 277.45 +- 623.0500000000001 +112: +- 287.45 +- 624.0 +113: +- 292.25 +- 629.9000000000001 +114: +- 302.25 +- 631.0 +115: +- 312.25 +- 632.0500000000001 +116: +- 322.25 +- 633.1 +117: +- 332.25 +- 634.1 +118: +- 340.90000000000003 +- 633.1500000000001 +119: +- 351.6 +- 622.4000000000001 +120: +- 361.6 +- 623.3000000000001 +121: +- 368.1 +- 627.85 +122: +- 382.5 +- 624.8000000000001 +123: +- 392.5 +- 625.6500000000001 +124: +- 273.0 +- 586.9 +125: +- 263.0 +- 594.1 +126: +- 283.0 +- 587.65 +127: +- 285.90000000000003 +- 597.25 +128: +- 287.85 +- 607.25 +129: +- 270.65000000000003 +- 606.95 +130: +- 260.65000000000003 +- 604.7 +131: +- 296.85 +- 613.45 +132: +- 306.85 +- 616.45 +133: +- 207.55 +- 580.4 +134: +- 197.55 +- 579.4 +135: +- 187.55 +- 578.4 +136: +- 433.25 +- 569.6 +137: +- 368.95000000000005 +- 570.4 +138: +- 383.45000000000005 +- 571.75 +139: +- 344.55 +- 578.65 +140: +- 343.6 +- 588.65 +141: +- 342.65000000000003 +- 598.65 +142: +- 341.70000000000005 +- 608.6500000000001 +143: +- 472.5 +- 567.75 +144: +- 473.70000000000005 +- 553.2 +145: +- 455.75 +- 550.4 +146: +- 445.75 +- 556.65 +147: +- 407.45000000000005 +- 557.0 +148: +- 473.85 +- 543.65 +149: +- 349.3 +- 543.7 +150: +- 348.35 +- 553.7 +151: +- 370.6 +- 542.4 +152: +- 380.6 +- 543.35 +153: +- 390.6 +- 544.3000000000001 +154: +- 400.6 +- 545.2 +155: +- 239.4 +- 541.0 +156: +- 238.4 +- 551.0 +157: +- 237.45000000000002 +- 561.0 +158: +- 236.45000000000002 +- 571.0 +159: +- 377.5 +- 532.65 +160: +- 387.5 +- 533.5 +161: +- 397.5 +- 534.35 +162: +- 407.5 +- 535.2 +163: +- 254.05 +- 532.65 +164: +- 338.6 +- 537.6 +165: +- 337.90000000000003 +- 547.6 +166: +- 337.55 +- 557.6 +167: +- 359.05 +- 516.1 +168: +- 366.65000000000003 +- 519.45 +169: +- 376.65000000000003 +- 520.35 +170: +- 386.65000000000003 +- 521.25 +171: +- 396.65000000000003 +- 522.2 +172: +- 406.65000000000003 +- 523.1 +173: +- 416.65000000000003 +- 524.0 +174: +- 426.65000000000003 +- 524.7 +175: +- 352.70000000000005 +- 509.9 +176: +- 364.90000000000003 +- 511.20000000000005 +177: +- 374.90000000000003 +- 512.35 +178: +- 384.90000000000003 +- 513.5 +179: +- 394.90000000000003 +- 514.65 +180: +- 404.90000000000003 +- 515.8000000000001 +181: +- 423.40000000000003 +- 517.9 +182: +- 413.40000000000003 +- 516.75 +183: +- 285.35 +- 518.3000000000001 +184: +- 284.45 +- 528.3000000000001 +185: +- 280.35 +- 535.15 +186: +- 288.05 +- 536.0 +187: +- 298.05 +- 536.85 +188: +- 338.8 +- 505.55000000000007 +189: +- 336.85 +- 515.5 +190: +- 297.20000000000005 +- 502.80000000000007 +191: +- 307.20000000000005 +- 503.75 +192: +- 319.6 +- 504.20000000000005 +193: +- 329.6 +- 504.9 +194: +- 343.85 +- 511.6 +195: +- 256.8 +- 498.85 +196: +- 266.8 +- 500.40000000000003 +197: +- 265.85 +- 510.35 +198: +- 264.85 +- 520.35 +199: +- 368.95000000000005 +- 496.55 +200: +- 378.95000000000005 +- 497.40000000000003 +201: +- 335.6 +- 493.65000000000003 +202: +- 227.0 +- 500.05 +203: +- 222.4 +- 510.9 +204: +- 221.4 +- 520.9 +205: +- 221.20000000000002 +- 530.9 +206: +- 219.45000000000002 +- 540.9 +207: +- 218.45000000000002 +- 550.9 +208: +- 217.5 +- 560.9 +209: +- 236.0 +- 506.15 +210: +- 245.70000000000002 +- 507.75 +211: +- 244.9 +- 517.75 +212: +- 302.3 +- 490.6 +213: +- 312.3 +- 491.5 +214: +- 269.45 +- 487.70000000000005 +215: +- 279.45 +- 488.6 +216: +- 242.25 +- 485.15000000000003 +217: +- 427.0 +- 469.35 +218: +- 426.20000000000005 +- 479.35 +219: +- 425.35 +- 489.35 +220: +- 424.55 +- 499.35 +221: +- 415.6 +- 500.5 +222: +- 405.6 +- 499.70000000000005 +223: +- 436.85 +- 504.75 +224: +- 429.40000000000003 +- 507.35 +225: +- 399.40000000000003 +- 504.5 +226: +- 438.45000000000005 +- 459.65000000000003 +227: +- 448.45000000000005 +- 460.20000000000005 +228: +- 394.0 +- 466.65000000000003 +229: +- 393.20000000000005 +- 476.65000000000003 +230: +- 392.40000000000003 +- 486.65000000000003 +231: +- 405.35 +- 456.95000000000005 +232: +- 415.35 +- 457.75 +233: +- 360.90000000000003 +- 464.0 +234: +- 360.1 +- 474.0 +235: +- 359.25 +- 484.0 +236: +- 372.35 +- 454.3 +237: +- 382.35 +- 455.1 +238: +- 327.90000000000003 +- 461.1 +239: +- 327.0 +- 471.1 +240: +- 326.20000000000005 +- 481.1 +241: +- 339.40000000000003 +- 451.55 +242: +- 349.40000000000003 +- 452.40000000000003 +243: +- 294.90000000000003 +- 457.95000000000005 +244: +- 293.95 +- 467.95000000000005 +245: +- 293.0 +- 477.95000000000005 +246: +- 306.25 +- 448.45000000000005 +247: +- 316.25 +- 449.45000000000005 +248: +- 261.85 +- 454.85 +249: +- 260.95 +- 464.85 +250: +- 260.1 +- 474.85 +251: +- 273.35 +- 445.25 +252: +- 283.35 +- 446.25 +253: +- 226.10000000000002 +- 451.6 +254: +- 225.20000000000002 +- 461.6 +255: +- 224.25 +- 471.6 +256: +- 224.20000000000002 +- 481.6 +257: +- 238.0 +- 441.90000000000003 +258: +- 248.0 +- 442.90000000000003 +259: +- 430.3 +- 428.1 +260: +- 429.55 +- 438.1 +261: +- 428.75 +- 448.1 +262: +- 441.55 +- 418.5 +263: +- 451.55 +- 419.25 +264: +- 397.35 +- 425.5 +265: +- 396.5 +- 435.5 +266: +- 395.70000000000005 +- 445.5 +267: +- 408.75 +- 415.90000000000003 +268: +- 418.75 +- 416.65000000000003 +269: +- 364.3 +- 422.90000000000003 +270: +- 363.5 +- 432.90000000000003 +271: +- 362.65000000000003 +- 442.90000000000003 +272: +- 375.6 +- 413.20000000000005 +273: +- 385.6 +- 414.0 +274: +- 331.75 +- 420.1 +275: +- 330.8 +- 430.1 +276: +- 329.8 +- 440.1 +277: +- 343.3 +- 410.5 +278: +- 353.3 +- 411.35 +279: +- 298.75 +- 416.70000000000005 +280: +- 297.8 +- 426.70000000000005 +281: +- 296.85 +- 436.70000000000005 +282: +- 310.40000000000003 +- 407.35 +283: +- 320.40000000000003 +- 408.3 +284: +- 265.40000000000003 +- 413.65000000000003 +285: +- 264.55 +- 423.65000000000003 +286: +- 263.7 +- 433.65000000000003 +287: +- 276.65000000000003 +- 404.05 +288: +- 286.78643798828125 +- 405.05059814453125 +289: +- 229.65 +- 410.85 +290: +- 228.8 +- 420.85 +291: +- 227.95000000000002 +- 430.85 +292: +- 241.45000000000002 +- 401.05 +293: +- 251.45 +- 401.85 +294: +- 401.05 +- 380.05 +295: +- 400.25 +- 390.05 +296: +- 399.40000000000003 +- 400.05 +297: +- 368.05 +- 377.05 +298: +- 367.20000000000005 +- 387.05 +299: +- 366.40000000000003 +- 397.05 +300: +- 379.45000000000005 +- 367.45000000000005 +301: +- 389.45000000000005 +- 368.35 +302: +- 336.35 +- 374.15000000000003 +303: +- 335.3 +- 384.15000000000003 +304: +- 334.3 +- 394.15000000000003 +305: +- 347.8 +- 364.6 +306: +- 357.8 +- 365.55 +307: +- 303.15000000000003 +- 371.05 +308: +- 302.15000000000003 +- 381.05 +309: +- 301.20000000000005 +- 391.05 +310: +- 314.65000000000003 +- 361.55 +311: +- 324.65000000000003 +- 362.5 +312: +- 269.25 +- 367.70000000000005 +313: +- 268.40000000000003 +- 377.70000000000005 +314: +- 267.55 +- 387.70000000000005 +315: +- 281.6 +- 358.45000000000005 +316: +- 291.6 +- 359.40000000000003 +317: +- 434.3 +- 345.05 +318: +- 433.35 +- 355.05 +319: +- 432.40000000000003 +- 365.05 +320: +- 428.05 +- 371.70000000000005 +321: +- 418.05 +- 370.85 +322: +- 434.40000000000003 +- 376.8 +323: +- 433.65000000000003 +- 386.8 +324: +- 432.85 +- 396.8 +325: +- 432.05 +- 406.8 +326: +- 405.15000000000003 +- 341.85 +327: +- 403.5 +- 351.70000000000005 +328: +- 402.65000000000003 +- 361.70000000000005 +329: +- 371.95000000000005 +- 339.15000000000003 +330: +- 370.35 +- 349.05 +331: +- 340.5 +- 336.75 +332: +- 339.0 +- 346.70000000000005 +333: +- 305.85 +- 341.8 +334: +- 304.95000000000005 +- 351.8 +335: +- 272.35 +- 338.55 +336: +- 271.55 +- 348.55 +337: +- 283.65000000000003 +- 328.90000000000003 +338: +- 293.65000000000003 +- 329.90000000000003 +339: +- 253.10000000000002 +- 326.05 +340: +- 263.1 +- 326.95000000000005 +341: +- 275.55 +- 299.3 +342: +- 274.8 +- 309.3 +343: +- 274.05 +- 319.3 +344: +- 286.7 +- 289.3 +345: +- 296.7 +- 289.85 +346: +- 306.70000000000005 +- 290.45 +347: +- 239.70000000000002 +- 296.65000000000003 +348: +- 238.60000000000002 +- 306.65000000000003 +349: +- 237.5 +- 316.65000000000003 +350: +- 235.60000000000002 +- 336.65000000000003 +351: +- 234.8 +- 346.65000000000003 +352: +- 233.95000000000002 +- 356.65000000000003 +353: +- 233.20000000000002 +- 366.65000000000003 +354: +- 232.4 +- 376.65000000000003 +355: +- 231.60000000000002 +- 386.65000000000003 +356: +- 251.7 +- 286.90000000000003 +357: +- 261.7 +- 287.65000000000003 +358: +- 278.05 +- 259.95 +359: +- 277.45 +- 269.95 +360: +- 276.8 +- 279.95 +361: +- 289.15000000000003 +- 249.90000000000003 +362: +- 299.15000000000003 +- 250.5 +363: +- 309.15000000000003 +- 251.05 +364: +- 245.4 +- 257.55 +365: +- 242.95000000000002 +- 267.55 +366: +- 241.45000000000002 +- 277.55 +367: +- 259.3 +- 248.2 +368: +- 269.3 +- 248.8 +369: +- 357.90000000000003 +- 213.4 +370: +- 367.90000000000003 +- 213.85000000000002 +371: +- 324.35 +- 211.9 +372: +- 334.35 +- 212.35000000000002 +373: +- 280.7 +- 220.55 +374: +- 280.05 +- 230.55 +375: +- 279.40000000000003 +- 240.55 +376: +- 291.05 +- 210.35000000000002 +377: +- 301.05 +- 210.8 +378: +- 255.8 +- 219.20000000000002 +379: +- 253.2 +- 229.20000000000002 +380: +- 250.45 +- 239.20000000000002 +381: +- 268.40000000000003 +- 209.25 +382: +- 414.6 +- 197.9 +383: +- 414.05 +- 207.9 +384: +- 411.05 +- 215.70000000000002 +385: +- 401.05 +- 215.3 +386: +- 391.05 +- 214.85000000000002 +387: +- 420.95000000000005 +- 216.10000000000002 +388: +- 430.95000000000005 +- 216.5 +389: +- 440.95000000000005 +- 216.95000000000002 +390: +- 447.35 +- 212.5 +391: +- 447.85 +- 202.5 +392: +- 424.8 +- 188.35000000000002 +393: +- 434.8 +- 190.4 +394: +- 348.70000000000005 +- 184.95000000000002 +395: +- 348.25 +- 194.95000000000002 +396: +- 347.75 +- 204.95000000000002 +397: +- 359.5 +- 175.3 +398: +- 369.5 +- 177.0 +399: +- 379.5 +- 179.05 +400: +- 381.70000000000005 +- 187.9 +401: +- 381.20000000000005 +- 197.9 +402: +- 393.6 +- 181.95000000000002 +403: +- 403.6 +- 184.0 +404: +- 315.15000000000003 +- 183.35000000000002 +405: +- 314.70000000000005 +- 193.35000000000002 +406: +- 314.20000000000005 +- 203.35000000000002 +407: +- 325.90000000000003 +- 172.85000000000002 +408: +- 282.6 +- 181.25 +409: +- 282.05 +- 191.25 +410: +- 281.5 +- 201.25 +411: +- 293.5 +- 171.15 +412: +- 303.5 +- 171.65 +413: +- 259.3 +- 179.65 +414: +- 258.6 +- 189.65 +415: +- 257.95 +- 199.65 +416: +- 271.15000000000003 +- 170.0 +417: +- 293.1 +- 160.85000000000002 +418: +- 303.1 +- 163.0 +419: +- 313.1 +- 165.10000000000002 +420: +- 333.1 +- 169.3 +421: +- 265.45 +- 155.05 +422: +- 276.05 +- 157.20000000000002 diff --git a/output_yaml/way_pts_high_level.yaml b/output_yaml/way_pts_high_level.yaml new file mode 100644 index 0000000..991748a --- /dev/null +++ b/output_yaml/way_pts_high_level.yaml @@ -0,0 +1,1275 @@ +0: +- 394.8 +- 456.1 +1: +- 262.8 +- 444.3 +2: +- 368.90000000000003 +- 366.5 +3: +- 407.40000000000003 +- 628.1500000000001 +4: +- 340.05 +- 622.0 +5: +- 241.5 +- 586.1 +6: +- 218.0 +- 576.9 +7: +- 345.3 +- 568.1 +8: +- 363.20000000000005 +- 530.65 +9: +- 350.55 +- 525.8000000000001 +10: +- 347.75 +- 500.90000000000003 +11: +- 328.85 +- 450.6 +12: +- 431.1 +- 417.6 +13: +- 398.20000000000005 +- 415.0 +14: +- 365.1 +- 412.35 +15: +- 401.95000000000005 +- 369.5 +16: +- 304.15000000000003 +- 360.5 +17: +- 306.1 +- 331.3 +18: +- 273.15000000000003 +- 328.0 +19: +- 278.75 +- 249.40000000000003 +20: +- 281.15000000000003 +- 210.05 +21: +- 235.15 +- 578.5 +22: +- 428.3 +- 545.8000000000001 +23: +- 441.0 +- 538.15 +24: +- 367.0 +- 531.5500000000001 +25: +- 243.55 +- 531.15 +26: +- 325.1 +- 492.05 +27: +- 347.40000000000003 +- 212.5 +28: +- 295.75 +- 447.45000000000005 +29: +- 276.2 +- 288.8 +30: +- 332.75 +- 409.55 +31: +- 299.90000000000003 +- 406.20000000000005 +32: +- 266.2 +- 403.15000000000003 +33: +- 416.0 +- 593.35 +34: +- 359.0 +- 570.1 +35: +- 429.8 +- 540.35 +36: +- 418.45000000000005 +- 539.7 +37: +- 235.8 +- 532.1 +38: +- 356.15000000000003 +- 498.95000000000005 +39: +- 291.85 +- 489.0 +40: +- 361.85 +- 453.5 +41: +- 283.0 +- 170.75 +42: +- 240.65 +- 593.3000000000001 +43: +- 361.20000000000005 +- 533.0500000000001 +44: +- 285.8 +- 507.80000000000007 +45: +- 444.25 +- 576.9 +46: +- 405.95000000000005 +- 573.4 +47: +- 448.05 +- 549.45 +48: +- 276.85 +- 501.45000000000005 +49: +- 313.85 +- 211.0 +50: +- 434.95000000000005 +- 537.45 +51: +- 341.20000000000005 +- 173.5 +52: +- 337.40000000000003 +- 363.65000000000003 +53: +- 442.35 +- 535.35 +54: +- 237.9 +- 579.0500000000001 +55: +- 436.95000000000005 +- 577.3000000000001 +56: +- 423.45000000000005 +- 576.1 +57: +- 391.3 +- 573.1 +58: +- 432.75 +- 548.65 +59: +- 287.05 +- 502.45000000000005 +60: +- 246.8 +- 498.55 +61: +- 343.75 +- 173.10000000000002 +62: +- 444.15000000000003 +- 570.75 +63: +- 334.90000000000003 +- 527.1 +64: +- 253.3 +- 602.25 +65: +- 232.47743225097656 +- 490.1767883300781 +66: +- 427.90000000000003 +- 458.8 +67: +- 315.75 +- 172.85000000000002 +68: +- 430.70000000000005 +- 537.3000000000001 +69: +- 260.65000000000003 +- 169.20000000000002 +70: +- 415.25 +- 187.35000000000002 +71: +- 283.45 +- 159.8 +72: +- 358.45000000000005 +- 495.6 +73: +- 427.3 +- 540.75 +74: +- 350.15000000000003 +- 533.2 +75: +- 434.6 +- 519.35 +76: +- 345.05 +- 498.20000000000005 +77: +- 227.5 +- 441.15000000000003 +78: +- 242.60000000000002 +- 325.3 +79: +- 257.90000000000003 +- 208.75 +80: +- 416.95000000000005 +- 536.1 +81: +- 342.35 +- 567.25 +82: +- 427.35 +- 537.4 +83: +- 350.25 +- 530.6 +84: +- 347.90000000000003 +- 518.8000000000001 +85: +- 391.45000000000005 +- 497.90000000000003 +86: +- 258.95 +- 486.1 +87: +- 230.9 +- 400.35 +88: +- 271.1 +- 357.25 +89: +- 248.75 +- 247.10000000000002 +90: +- 380.5 +- 214.0 +91: +- 349.35 +- 174.45000000000002 +92: +- 330.90000000000003 +- 567.0500000000001 +93: +- 316.95000000000005 +- 618.75 +94: +- 408.45000000000005 +- 546.5 +95: +- 416.0 +- 539.15 +96: +- 263.7 +- 533.15 +97: +- 341.35 +- 527.7 +98: +- 448.25 +- 194.60000000000002 +99: +- 241.25 +- 286.2 +100: +- 327.40000000000003 +- 621.5 +101: +- 312.55 +- 602.4 +102: +- 318.15000000000003 +- 611.2 +103: +- 446.05 +- 595.9 +104: +- 243.8 +- 601.65 +105: +- 234.05 +- 602.45 +106: +- 233.10000000000002 +- 612.45 +107: +- 237.45000000000002 +- 619.3000000000001 +108: +- 247.45 +- 620.2 +109: +- 257.45 +- 621.1500000000001 +110: +- 267.45 +- 622.1 +111: +- 277.45 +- 623.0500000000001 +112: +- 287.45 +- 624.0 +113: +- 292.25 +- 629.9000000000001 +114: +- 302.25 +- 631.0 +115: +- 312.25 +- 632.0500000000001 +116: +- 322.25 +- 633.1 +117: +- 332.25 +- 634.1 +118: +- 340.90000000000003 +- 633.1500000000001 +119: +- 351.6 +- 622.4000000000001 +120: +- 361.6 +- 623.3000000000001 +121: +- 368.1 +- 627.85 +122: +- 382.5 +- 624.8000000000001 +123: +- 392.5 +- 625.6500000000001 +124: +- 273.0 +- 586.9 +125: +- 263.0 +- 594.1 +126: +- 283.0 +- 587.65 +127: +- 285.90000000000003 +- 597.25 +128: +- 287.85 +- 607.25 +129: +- 270.65000000000003 +- 606.95 +130: +- 260.65000000000003 +- 604.7 +131: +- 296.85 +- 613.45 +132: +- 306.85 +- 616.45 +133: +- 207.55 +- 580.4 +134: +- 197.55 +- 579.4 +135: +- 187.55 +- 578.4 +136: +- 433.25 +- 569.6 +137: +- 368.95000000000005 +- 570.4 +138: +- 383.45000000000005 +- 571.75 +139: +- 344.55 +- 578.65 +140: +- 343.6 +- 588.65 +141: +- 342.65000000000003 +- 598.65 +142: +- 341.70000000000005 +- 608.6500000000001 +143: +- 472.5 +- 567.75 +144: +- 473.70000000000005 +- 553.2 +145: +- 455.75 +- 550.4 +146: +- 445.75 +- 556.65 +147: +- 407.45000000000005 +- 557.0 +148: +- 473.85 +- 543.65 +149: +- 349.3 +- 543.7 +150: +- 348.35 +- 553.7 +151: +- 370.6 +- 542.4 +152: +- 380.6 +- 543.35 +153: +- 390.6 +- 544.3000000000001 +154: +- 400.6 +- 545.2 +155: +- 239.4 +- 541.0 +156: +- 238.4 +- 551.0 +157: +- 237.45000000000002 +- 561.0 +158: +- 236.45000000000002 +- 571.0 +159: +- 377.5 +- 532.65 +160: +- 387.5 +- 533.5 +161: +- 397.5 +- 534.35 +162: +- 407.5 +- 535.2 +163: +- 254.05 +- 532.65 +164: +- 338.6 +- 537.6 +165: +- 337.90000000000003 +- 547.6 +166: +- 337.55 +- 557.6 +167: +- 359.05 +- 516.1 +168: +- 366.65000000000003 +- 519.45 +169: +- 376.65000000000003 +- 520.35 +170: +- 386.65000000000003 +- 521.25 +171: +- 396.65000000000003 +- 522.2 +172: +- 406.65000000000003 +- 523.1 +173: +- 416.65000000000003 +- 524.0 +174: +- 426.65000000000003 +- 524.7 +175: +- 352.70000000000005 +- 509.9 +176: +- 364.90000000000003 +- 511.20000000000005 +177: +- 374.90000000000003 +- 512.35 +178: +- 384.90000000000003 +- 513.5 +179: +- 394.90000000000003 +- 514.65 +180: +- 404.90000000000003 +- 515.8000000000001 +181: +- 423.40000000000003 +- 517.9 +182: +- 413.40000000000003 +- 516.75 +183: +- 285.35 +- 518.3000000000001 +184: +- 284.45 +- 528.3000000000001 +185: +- 280.35 +- 535.15 +186: +- 288.05 +- 536.0 +187: +- 298.05 +- 536.85 +188: +- 338.8 +- 505.55000000000007 +189: +- 336.85 +- 515.5 +190: +- 297.20000000000005 +- 502.80000000000007 +191: +- 307.20000000000005 +- 503.75 +192: +- 319.6 +- 504.20000000000005 +193: +- 329.6 +- 504.9 +194: +- 343.85 +- 511.6 +195: +- 256.8 +- 498.85 +196: +- 266.8 +- 500.40000000000003 +197: +- 265.85 +- 510.35 +198: +- 264.85 +- 520.35 +199: +- 368.95000000000005 +- 496.55 +200: +- 378.95000000000005 +- 497.40000000000003 +201: +- 335.6 +- 493.65000000000003 +202: +- 227.0 +- 500.05 +203: +- 222.4 +- 510.9 +204: +- 221.4 +- 520.9 +205: +- 221.20000000000002 +- 530.9 +206: +- 219.45000000000002 +- 540.9 +207: +- 218.45000000000002 +- 550.9 +208: +- 217.5 +- 560.9 +209: +- 236.0 +- 506.15 +210: +- 245.70000000000002 +- 507.75 +211: +- 244.9 +- 517.75 +212: +- 302.533203125 +- 490.032958984375 +213: +- 312.3 +- 491.5 +214: +- 269.45 +- 487.70000000000005 +215: +- 279.45 +- 488.6 +216: +- 242.25 +- 485.15000000000003 +217: +- 427.0 +- 469.35 +218: +- 426.20000000000005 +- 479.35 +219: +- 425.35 +- 489.35 +220: +- 424.55 +- 499.35 +221: +- 415.6 +- 500.5 +222: +- 405.6 +- 499.70000000000005 +223: +- 436.85 +- 504.75 +224: +- 429.40000000000003 +- 507.35 +225: +- 399.40000000000003 +- 504.5 +226: +- 438.45000000000005 +- 459.65000000000003 +227: +- 448.45000000000005 +- 460.20000000000005 +228: +- 394.0 +- 466.65000000000003 +229: +- 393.20000000000005 +- 476.65000000000003 +230: +- 392.40000000000003 +- 486.65000000000003 +231: +- 405.35 +- 456.95000000000005 +232: +- 415.35 +- 457.75 +233: +- 360.90000000000003 +- 464.0 +234: +- 360.1 +- 474.0 +235: +- 359.25 +- 484.0 +236: +- 372.35 +- 454.3 +237: +- 382.35 +- 455.1 +238: +- 327.90000000000003 +- 461.1 +239: +- 326.94915771484375 +- 470.8092956542969 +240: +- 326.6719970703125 +- 480.9545593261719 +241: +- 339.40000000000003 +- 451.55 +242: +- 349.40000000000003 +- 452.40000000000003 +243: +- 294.90000000000003 +- 457.95000000000005 +244: +- 293.95 +- 467.95000000000005 +245: +- 293.0 +- 477.95000000000005 +246: +- 306.3183288574219 +- 448.5001525878906 +247: +- 316.58544921875 +- 449.3061218261719 +248: +- 261.85 +- 454.85 +249: +- 260.95 +- 464.85 +250: +- 260.1 +- 474.85 +251: +- 273.35 +- 445.25 +252: +- 283.35 +- 446.25 +253: +- 226.10000000000002 +- 451.6 +254: +- 225.20000000000002 +- 461.6 +255: +- 224.25 +- 471.6 +256: +- 224.20000000000002 +- 481.6 +257: +- 238.0 +- 441.90000000000003 +258: +- 248.0 +- 442.90000000000003 +259: +- 430.3 +- 428.1 +260: +- 429.55 +- 438.1 +261: +- 428.75 +- 448.1 +262: +- 441.55 +- 418.5 +263: +- 451.55 +- 419.25 +264: +- 397.35 +- 425.5 +265: +- 396.5 +- 435.5 +266: +- 395.70000000000005 +- 445.5 +267: +- 408.75 +- 415.90000000000003 +268: +- 418.75 +- 416.65000000000003 +269: +- 364.3 +- 422.90000000000003 +270: +- 363.5 +- 432.90000000000003 +271: +- 362.65000000000003 +- 442.90000000000003 +272: +- 375.6 +- 413.20000000000005 +273: +- 385.6 +- 414.0 +274: +- 331.75 +- 420.1 +275: +- 330.8 +- 430.1 +276: +- 329.8 +- 440.1 +277: +- 343.3 +- 410.5 +278: +- 353.3 +- 411.35 +279: +- 298.75 +- 416.70000000000005 +280: +- 297.8 +- 426.70000000000005 +281: +- 296.85 +- 436.70000000000005 +282: +- 310.40000000000003 +- 407.35 +283: +- 320.40000000000003 +- 408.3 +284: +- 265.40000000000003 +- 413.65000000000003 +285: +- 264.55 +- 423.65000000000003 +286: +- 263.7 +- 433.65000000000003 +287: +- 276.65000000000003 +- 404.05 +288: +- 286.65000000000003 +- 405.0 +289: +- 229.65 +- 410.85 +290: +- 228.8 +- 420.85 +291: +- 227.95000000000002 +- 430.85 +292: +- 241.45000000000002 +- 401.05 +293: +- 251.45 +- 401.85 +294: +- 401.05 +- 380.05 +295: +- 400.25 +- 390.05 +296: +- 399.40000000000003 +- 400.05 +297: +- 368.05 +- 377.05 +298: +- 367.20000000000005 +- 387.05 +299: +- 366.40000000000003 +- 397.05 +300: +- 379.45000000000005 +- 367.45000000000005 +301: +- 389.45000000000005 +- 368.35 +302: +- 336.35 +- 374.15000000000003 +303: +- 335.3 +- 384.15000000000003 +304: +- 334.3 +- 394.15000000000003 +305: +- 347.8 +- 364.6 +306: +- 357.8 +- 365.55 +307: +- 303.15000000000003 +- 371.05 +308: +- 302.15000000000003 +- 381.05 +309: +- 301.20000000000005 +- 391.05 +310: +- 314.65000000000003 +- 361.55 +311: +- 324.65000000000003 +- 362.5 +312: +- 269.25 +- 367.70000000000005 +313: +- 268.40000000000003 +- 377.70000000000005 +314: +- 267.55 +- 387.70000000000005 +315: +- 281.6 +- 358.45000000000005 +316: +- 291.6 +- 359.40000000000003 +317: +- 434.3 +- 345.05 +318: +- 433.35 +- 355.05 +319: +- 432.40000000000003 +- 365.05 +320: +- 428.05 +- 371.70000000000005 +321: +- 418.05 +- 370.85 +322: +- 434.40000000000003 +- 376.8 +323: +- 433.65000000000003 +- 386.8 +324: +- 432.85 +- 396.8 +325: +- 432.05 +- 406.8 +326: +- 405.15000000000003 +- 341.85 +327: +- 403.5 +- 351.70000000000005 +328: +- 402.65000000000003 +- 361.70000000000005 +329: +- 371.95000000000005 +- 339.15000000000003 +330: +- 370.35 +- 349.05 +331: +- 340.5 +- 336.75 +332: +- 339.0 +- 346.70000000000005 +333: +- 305.85 +- 341.8 +334: +- 304.95000000000005 +- 351.8 +335: +- 272.35 +- 338.55 +336: +- 271.55 +- 348.55 +337: +- 283.65000000000003 +- 328.90000000000003 +338: +- 293.65000000000003 +- 329.90000000000003 +339: +- 253.10000000000002 +- 326.05 +340: +- 263.1 +- 326.95000000000005 +341: +- 275.55 +- 299.3 +342: +- 274.8 +- 309.3 +343: +- 274.05 +- 319.3 +344: +- 286.7 +- 289.3 +345: +- 296.7 +- 289.85 +346: +- 306.70000000000005 +- 290.45 +347: +- 239.70000000000002 +- 296.65000000000003 +348: +- 238.60000000000002 +- 306.65000000000003 +349: +- 237.5 +- 316.65000000000003 +350: +- 235.60000000000002 +- 336.65000000000003 +351: +- 234.8 +- 346.65000000000003 +352: +- 233.95000000000002 +- 356.65000000000003 +353: +- 233.20000000000002 +- 366.65000000000003 +354: +- 232.4 +- 376.65000000000003 +355: +- 231.60000000000002 +- 386.65000000000003 +356: +- 251.7 +- 286.90000000000003 +357: +- 261.7 +- 287.65000000000003 +358: +- 278.05 +- 259.95 +359: +- 277.45 +- 269.95 +360: +- 276.8 +- 279.95 +361: +- 289.15000000000003 +- 249.90000000000003 +362: +- 299.15000000000003 +- 250.5 +363: +- 309.15000000000003 +- 251.05 +364: +- 245.4 +- 257.55 +365: +- 242.95000000000002 +- 267.55 +366: +- 241.45000000000002 +- 277.55 +367: +- 259.3 +- 248.2 +368: +- 269.3 +- 248.8 +369: +- 357.90000000000003 +- 213.4 +370: +- 367.90000000000003 +- 213.85000000000002 +371: +- 324.35 +- 211.9 +372: +- 334.35 +- 212.35000000000002 +373: +- 280.7 +- 220.55 +374: +- 280.05 +- 230.55 +375: +- 279.40000000000003 +- 240.55 +376: +- 291.05 +- 210.35000000000002 +377: +- 301.05 +- 210.8 +378: +- 255.8 +- 219.20000000000002 +379: +- 253.2 +- 229.20000000000002 +380: +- 250.45 +- 239.20000000000002 +381: +- 268.40000000000003 +- 209.25 +382: +- 414.6 +- 197.9 +383: +- 414.05 +- 207.9 +384: +- 411.05 +- 215.70000000000002 +385: +- 401.05 +- 215.3 +386: +- 391.05 +- 214.85000000000002 +387: +- 420.95000000000005 +- 216.10000000000002 +388: +- 430.95000000000005 +- 216.5 +389: +- 440.95000000000005 +- 216.95000000000002 +390: +- 447.35 +- 212.5 +391: +- 447.85 +- 202.5 +392: +- 424.8 +- 188.35000000000002 +393: +- 434.8 +- 190.4 +394: +- 348.70000000000005 +- 184.95000000000002 +395: +- 348.25 +- 194.95000000000002 +396: +- 347.75 +- 204.95000000000002 +397: +- 359.5 +- 175.3 +398: +- 369.5 +- 177.0 +399: +- 379.5 +- 179.05 +400: +- 381.70000000000005 +- 187.9 +401: +- 381.20000000000005 +- 197.9 +402: +- 393.6 +- 181.95000000000002 +403: +- 403.6 +- 184.0 +404: +- 315.15000000000003 +- 183.35000000000002 +405: +- 314.70000000000005 +- 193.35000000000002 +406: +- 314.20000000000005 +- 203.35000000000002 +407: +- 325.90000000000003 +- 172.85000000000002 +408: +- 282.6 +- 181.25 +409: +- 282.05 +- 191.25 +410: +- 281.5 +- 201.25 +411: +- 293.5 +- 171.15 +412: +- 303.5 +- 171.65 +413: +- 259.3 +- 179.65 +414: +- 258.6 +- 189.65 +415: +- 257.95 +- 199.65 +416: +- 271.15000000000003 +- 170.0 +417: +- 293.1 +- 160.85000000000002 +418: +- 303.1 +- 163.0 +419: +- 313.1 +- 165.10000000000002 +420: +- 333.1 +- 169.3 +421: +- 265.45 +- 155.05 +422: +- 276.05 +- 157.20000000000002 +423: +- 315.40435791015625 +- 477.9844970703125 +424: +- 312.3125 +- 485.1031799316406 diff --git a/output_yaml/way_pts_low_level.yaml b/output_yaml/way_pts_low_level.yaml new file mode 100644 index 0000000..7a6ea83 --- /dev/null +++ b/output_yaml/way_pts_low_level.yaml @@ -0,0 +1,288 @@ +0: +- 394.8 +- 456.1 +1: +- 262.8 +- 444.3 +2: +- 368.90000000000003 +- 366.5 +3: +- 407.40000000000003 +- 628.1500000000001 +4: +- 340.05 +- 622.0 +5: +- 241.5 +- 586.1 +6: +- 218.0 +- 576.9 +7: +- 345.3 +- 568.1 +8: +- 363.20000000000005 +- 530.65 +9: +- 350.55 +- 525.8000000000001 +10: +- 347.75 +- 500.90000000000003 +11: +- 329.2942810058594 +- 450.0257263183594 +12: +- 431.1 +- 417.6 +13: +- 398.20000000000005 +- 415.0 +14: +- 365.1 +- 412.35 +15: +- 401.95000000000005 +- 369.5 +16: +- 304.41143798828125 +- 359.6991271972656 +17: +- 306.1 +- 331.3 +18: +- 273.15000000000003 +- 328.0 +19: +- 278.75 +- 249.40000000000003 +20: +- 281.15000000000003 +- 210.05 +21: +- 235.15 +- 578.5 +23: +- 441.0 +- 538.15 +24: +- 367.0 +- 531.5500000000001 +25: +- 243.55 +- 531.15 +26: +- 325.7059631347656 +- 492.0518798828125 +27: +- 347.40000000000003 +- 212.5 +28: +- 296.23443603515625 +- 446.56121826171875 +29: +- 276.2 +- 288.8 +30: +- 332.75 +- 409.55 +31: +- 299.90000000000003 +- 406.20000000000005 +32: +- 266.2 +- 403.15000000000003 +33: +- 416.0 +- 593.35 +34: +- 359.0 +- 570.1 +37: +- 235.8 +- 532.1 +38: +- 356.15000000000003 +- 498.95000000000005 +39: +- 291.85 +- 489.0 +40: +- 361.371337890625 +- 452.96978759765625 +41: +- 283.0 +- 170.75 +42: +- 240.65 +- 593.3000000000001 +43: +- 361.20000000000005 +- 533.0500000000001 +44: +- 285.8 +- 507.80000000000007 +45: +- 444.25 +- 576.9 +46: +- 405.95000000000005 +- 573.4 +47: +- 448.05 +- 549.45 +48: +- 276.85 +- 501.45000000000005 +49: +- 313.85 +- 211.0 +51: +- 341.20000000000005 +- 173.5 +52: +- 337.40000000000003 +- 363.65000000000003 +54: +- 237.9 +- 579.0500000000001 +55: +- 436.95000000000005 +- 577.3000000000001 +56: +- 423.45000000000005 +- 576.1 +58: +- 432.75 +- 548.65 +59: +- 287.05 +- 502.45000000000005 +60: +- 246.8 +- 498.55 +61: +- 343.75 +- 173.10000000000002 +62: +- 444.15000000000003 +- 570.75 +63: +- 334.90000000000003 +- 527.1 +64: +- 253.3 +- 602.25 +65: +- 232.55 +- 490.6 +66: +- 427.90000000000003 +- 458.8 +67: +- 315.75 +- 172.85000000000002 +69: +- 260.65000000000003 +- 169.20000000000002 +70: +- 415.25 +- 187.35000000000002 +71: +- 283.45 +- 159.8 +72: +- 358.45000000000005 +- 495.6 +74: +- 350.15000000000003 +- 533.2 +75: +- 434.6 +- 519.35 +76: +- 345.05 +- 498.20000000000005 +77: +- 227.5 +- 441.15000000000003 +78: +- 242.60000000000002 +- 325.3 +79: +- 257.90000000000003 +- 208.75 +80: +- 416.95000000000005 +- 536.1 +81: +- 342.35 +- 567.25 +82: +- 431.2927551269531 +- 536.7435302734375 +83: +- 350.25 +- 530.6 +84: +- 347.90000000000003 +- 518.8000000000001 +85: +- 391.45000000000005 +- 497.90000000000003 +86: +- 258.95 +- 486.1 +87: +- 230.9 +- 400.35 +88: +- 271.1 +- 357.25 +89: +- 248.75 +- 247.10000000000002 +90: +- 380.5 +- 214.0 +91: +- 349.35 +- 174.45000000000002 +92: +- 330.90000000000003 +- 567.0500000000001 +93: +- 316.95000000000005 +- 618.75 +94: +- 408.45000000000005 +- 546.5 +96: +- 263.7 +- 533.15 +97: +- 341.35 +- 527.7 +98: +- 448.25 +- 194.60000000000002 +99: +- 241.25 +- 286.2 +100: +- 284.2564697265625 +- 532.891845703125 +101: +- 265.7926330566406 +- 500.62896728515625 +102: +- 425.0286865234375 +- 500.0166931152344 +103: +- 432.0601806640625 +- 372.5963134765625 +104: +- 401.0057373046875 +- 388.52801513671875 diff --git a/readme/graph.png b/readme/graph.png new file mode 100644 index 0000000..b1a0e08 Binary files /dev/null and b/readme/graph.png differ diff --git a/readme/img.png b/readme/img.png new file mode 100644 index 0000000..249716d Binary files /dev/null and b/readme/img.png differ diff --git a/readme/img2.png b/readme/img2.png new file mode 100644 index 0000000..2142f71 Binary files /dev/null and b/readme/img2.png differ diff --git a/readme/img_2.png b/readme/img_2.png new file mode 100644 index 0000000..bfa74ef Binary files /dev/null and b/readme/img_2.png differ diff --git a/readme/in_bw_waypts.png b/readme/in_bw_waypts.png new file mode 100644 index 0000000..baaef3d Binary files /dev/null and b/readme/in_bw_waypts.png differ diff --git a/readme/readme.md b/readme/readme.md new file mode 100644 index 0000000..6a8d718 --- /dev/null +++ b/readme/readme.md @@ -0,0 +1,85 @@ +# MAKE CONNECTIVITY GRAPH FROM 2D MAP + +This package detects waypoints from a 2D map and then makes a connectivity graph from it. first open the waypoint folder and then install the required python packages: + +1) OpenCV: 3.4.4 +2) Numpy: 1.16.6 +3) Skimage: 0.14.5 + +Then, in the imput image make sure that the roads are in white color and the obstacles are in black color as shown in the example image + +![Screenshot](img.png) + +## STEPS TO USE: + +1) In src/skeleton.py specify the path of the map image and then run it.This will convert all the roads to a single pixel wide line. +2) Edit the input image path in src/waypoint.py somewhere around line 977 to include the skeleton image. +3) To run the code: + 1) start roscore + + ``` roscore ``` + 2) run map_server to publish the map, navigate to waypoint/map_server and run: + + ``` rosrun map_server map_server map.yaml ``` + + 3) publish transform to the map: + + ``` rosrun tf static_transform_publisher 0 0 0 0 0 0 base_link map 50 ``` + + 4) run rviz with the waypt_rviz_config.rviz config file + 5) run waypoint.py + + ``` python waypoint.py ``` + +4) Then after a few seconds, waypoints will be visible in rviz as: + ![Screenshot](img_2.png) + +5) To add a waypoint publish a point whereever you want to add it, to remove the waypoint rightclick on it and click on delete. You can also move the waypoints by dragging the arrows. +6) Adjust the waypoints properly before making the connected graph. +7) Right click on any of the waypoint and click on "make connected graph" button, this will connect the waypoints to each other and lines will be visible one by one. + ![Screenshot](graph.png) +8) To delete an edge between two waypoints, rightclick on the first one and select delete edge, then rightclick on the second one and select delete edge. +9) To make an edge between two waypoints, rightclick on the first and select make edge and rightclick on the second and select make edge, this will create an edge between two waypoints. +10) For the edges which are manually added, the program stores the length of the edge as euclidian distance between the two waypoints. For the edges which were automatically generated, it stores the length of edge as the length of the path that connects the two waypoints. +11) There is no undo button so make changes carefully. +12) After adjusting the edges, rightclick on any waypoint and select save to yaml. +13) This will save three files + + 1)connected_graph_high_level.yaml: this is our connectivity graph + + 2)edges_high_level: this is to be used when we want to edit our connected_graph_low_level.yaml using this tool. + + 3)way_pts_high_level.yaml: this is to be used when we want to edit our connected_graph_low_level.yaml using this tool. + +14) When we press the save to yaml for the first time, it will save the above three files to output_yaml folder and then detect the inbetween waypoints in approximately 10 metres apart and then make their connectivity graph and it will be visible on rviz. This will take about a minute. + + ![Screenshot](in_bw_waypts.png) + +15) Now edit this and then when you press save to yaml, it will save three new files: + 1) connected_graph_low_level.yaml: this is our connected graph with additional inbetween waypoints. + 2) edges_low_level.yaml: this file is used to edit the connected_graph_low_level.yaml using this tool + 3) way_pts_low_level.yaml: this file is used to edit the connected_graph_low_level.yaml using this tool + +16) Now you can quit the program. + +17) To edit previous work, run everything on step 3, and rightclick on any waypoint and select load previous. +18) In terminal, it will ask for the path to the three yaml files that were saved. +19) Specify the path and then press enter. +20) Depending on the yaml files you choosed (low level or high level), the waypoints and edges will be visible in rviz and you can edit them and press save to yaml. This will save the files as: + + 1)connected_graph_edited.yaml + + 2)edges_edited.yaml + + 3)way_pts_edited.yaml + +21) While loading the files make sure you enter the path of way_pts yaml and edge yaml file corresponding to your connected_graph yaml file +22) The format of the saved connected graph yaml will be different from the one required, to change it go to src/convert_format.py change the input yaml path and run the code using: + ``` + python3 convert_format.py + ``` +23) This will save a converted_graph.yaml in the src folder. +### CONTACT: ### +Nisarg Panchal, email: nisargnileshpanchal@gmail.com| + + diff --git a/src/broken_roads.png b/src/broken_roads.png new file mode 100644 index 0000000..bf1ba6e Binary files /dev/null and b/src/broken_roads.png differ diff --git a/src/convert_format.py b/src/convert_format.py new file mode 100644 index 0000000..f1e6abe --- /dev/null +++ b/src/convert_format.py @@ -0,0 +1,17 @@ +import yaml + +# Load the original YAML data +with open("connected_graph_high_level.yaml", "r") as f: + data = yaml.safe_load(f) + +# Convert the data to the desired format +waypoints_cpp = [] +for node_num, node_data in data.items(): + node_pos = node_data["node_pos"] + edges = [{"outward_edge_to": str(edge_num), "path_length": str(distance)} for edge_num, distance in node_data["outward_edges"].items()] + node_name = int(node_num) + waypoints_cpp.append({"node_name": node_name,"node_pos": node_pos, "out_edges": edges}) + +# Save the converted YAML data +with open("converted_graph.yaml", "w") as f: + yaml.dump({"waypoints_cpp": waypoints_cpp}, f, sort_keys=True) diff --git a/src/output_graph.png b/src/output_graph.png new file mode 100644 index 0000000..0de17fa Binary files /dev/null and b/src/output_graph.png differ diff --git a/src/skeletonise.py b/src/skeletonise.py new file mode 100644 index 0000000..eedbbde --- /dev/null +++ b/src/skeletonise.py @@ -0,0 +1,40 @@ +import cv2 +import numpy as np +from skimage import morphology +bw_map = cv2.imread("map_pringle_dilate.png") +# kernel = np.ones((20, 20), np.uint8) + +gray = cv2.cvtColor(bw_map, cv2.COLOR_BGR2GRAY) +im = cv2.threshold(bw_map, 100, 255, cv2.THRESH_BINARY)[1]#if roads white then use binary_inv, if roads black use binary +im=255-im + +# im = cv2.erode(im, kernel, iterations=1) +# im = cv2.dilate(im, kernel, iterations=1) + +# showim(im) +# kernel = np.asanyarray([[1,1,1], [1,1,1], [1,1,1]], np.float32)/9.0 +# im = cv2.filter2D(im, -1, kernel) +# showim(im) +# im = cv2.ximgproc.thinning(gray, thinningType=cv2.ximgproc.THINNING_ZHANGSUEN) + +im = morphology.skeletonize(im > 0) +im = im.astype(np.uint8) +# im=np.vstack([im,im,im]) +im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY ) + +# gray = cv2.bitwise_and(bw_map, bw_map, mask = im) + +# im = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1] +# detect corners with the goodFeaturesToTrack function. +corners = cv2.goodFeaturesToTrack(im, 1000, 0.375, 50) +# showim(im) +corners = np.int0(corners) + +# we iterate through each corner, +# making a circle at each point that we think is a corner. +for i in corners: + x, y = i.ravel() + cv2.circle(bw_map, (x, y), 30, (0,0,255), -1) +print(len(corners)) + +cv2.imwrite("123.png",im) \ No newline at end of file diff --git a/src/waypoint.py b/src/waypoint.py new file mode 100644 index 0000000..5da55dc --- /dev/null +++ b/src/waypoint.py @@ -0,0 +1,1005 @@ +from geometry_msgs.msg import PointStamped +import cv2 +import numpy as np +import yaml +import time +import rospy +import copy +from interactive_markers.interactive_marker_server import * +from interactive_markers.menu_handler import * +from visualization_msgs.msg import * +from geometry_msgs.msg import Point +from tf.broadcaster import TransformBroadcaster +from visualization_msgs.msg import Marker +import os +from geometry_msgs.msg import Point +from random import random +from math import sin +# import sknw +global press_count +press_count = 1 +server = None +menu_handler = MenuHandler() +br = None +counter = 0 +global count +count=0 +global graph +graph={} +global line_pub +line_pub = rospy.Publisher('edges', Marker, queue_size=10) +global lines +lines={} +# lines=[] +global make_edge_bw +make_edge_bw=[] +global delete_edge_bw +delete_edge_bw=[] + +# global del_count +# class dictionary(dict): + +# # __init__ function +# def __init__(self): +# self = dict() + +# # Function to add key:value +# def add(self, key, value): +# self[key] = value + + +def frameCallback( msg ): + global counter, br + time = rospy.Time.now() + br.sendTransform( (0, 0, sin(counter/140.0)*2.0), (0, 0, 0, 1.0), time, "base_link", "moving_frame" ) + counter += 1 + +#function that reads the feedback on the interactive markers +def processFeedback( feedback): + s = "Feedback from marker '" + feedback.marker_name + s += "' / control '" + feedback.control_name + "'" + + mp = "" + if feedback.mouse_point_valid: + mp = " at " + str(feedback.mouse_point.x) + mp += ", " + str(feedback.mouse_point.y) + mp += ", " + str(feedback.mouse_point.z) + mp += " in frame " + feedback.header.frame_id + way_pts[int(feedback.marker_name)]=[feedback.mouse_point.x,feedback.mouse_point.y]#IF WE DRAG AND CHANGE POSITION OF WAYPOINT THEN UPDATE ITS IN THE DICTIONARY + print("UPDATED DICTIONARY FOR WAYPOINT :", feedback.marker_name," [x,y] = ",way_pts[int(feedback.marker_name)])#PRINT THE UPDATED POSITION + + if feedback.event_type == InteractiveMarkerFeedback.BUTTON_CLICK: + rospy.loginfo( s + ": button click" + mp + "." ) + + elif feedback.event_type == InteractiveMarkerFeedback.MENU_SELECT: + #IF FIRST MENU ITEM (DELETE WAYPOINT) SELECTED + if feedback.menu_entry_id == 1: + server.erase(feedback.marker_name) #REMOVE MARKER FROM RVIZ + print("DELETED WAYPOINT :",feedback.marker_name) #PRINT THE NAME OF MARKER THAT WAS DELETED + del way_pts[int(feedback.marker_name)] #REMOVE IT FROM THE DICTIONARY + print("UPDATED DICTIONARY") + server.applyChanges() + + #IF SECOND MENU ITEM (MAKE CONNECTED GRAPH) IS SELECTED + if feedback.menu_entry_id == 2: + global im + global line_pub + yaml_string=yaml.dump(way_pts) + print(yaml_string) + + #DRAW BLACK CIRCLES ON THE WAYPOINTS TO CREATE SEPARATE SEGMENTS FOR EACH ROAD + for i in way_pts: + x=way_pts[i][0] + y=way_pts[i][1] + cv2.circle(im,(int(((x+10)/0.05)),int(((y+10)/0.05))),10,255,-1) + + im=255-im + cv2.imwrite("broken_roads.png",im) + im=cv2.imread("broken_roads.png") + im_orig=im + im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY) + im = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1] + #FIND CONTOURS + _,contours, _ = cv2.findContours(im, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) + global graph + # global lines + print("Number of edges found = ",len(contours)) + global indx + indx=0 + #LOOP THROUGH EACH CONTOUR + for contour in contours: + #FIND THE EXTREME POINTS OF EACH CONTOUR + extLeft = tuple(contour[contour[:, :, 0].argmin()][0]) + extRight = tuple(contour[contour[:, :, 0].argmax()][0]) + extTop = tuple(contour[contour[:, :, 1].argmin()][0]) + extBot = tuple(contour[contour[:, :, 1].argmax()][0]) + dist_e_w = ((extLeft[0]-extRight[1])**2 + (extLeft[0]-extRight[1])**2 )**0.5 + dist_n_s = ((extTop[0]-extBot[1])**2 + (extTop[0]-extBot[1])**2 )**0.5 + #IF DISTANCE FROM EAST TO WEST EXTREME POINT IS MORE THAN NORTH TO SOUTH THEN OUT EXTREME POINTS ARE EAST AND WEST + if dist_e_w > dist_n_s: + p1=[extLeft[0],extLeft[1]] + p2=[extRight[0],extRight[1]] + #ELSE OUR EXTREME POINTS ARE NORTH AND SOUTH + else: + p1=[extTop[0],extTop[1]] + p2=[extBot[0],extBot[1]] + + + cv2.circle(im_orig, (p1[0], p1[1]), 5, (0,0,255), -1) + cv2.circle(im_orig, (p2[0], p2[1]), 5, (0,0,255), -1) + + # way_pts_values=np.array(list(way_pts.values())) + p1_arr = np.array(p1) + p2_arr = np.array(p2) + + #FROM EACH CONTOUR EXTREME POINT, FIND THE NEAREST WAYPOINT AND MAKE AN EDGE BETWEEN BOTH THE WAYPOINTS + p1_key = None + p1_dist = float('inf') + p2_key = None + p2_dist = float('inf') + for key, value in way_pts.items(): + value_arr = np.array(value) + value_arr=(value_arr+10)/0.05 + dist_p1 = np.linalg.norm(value_arr - p1_arr) + if dist_p1 < p1_dist: + p1_dist = dist_p1 + p1_key = key + dist_p2 = np.linalg.norm(value_arr - p2_arr) + if dist_p2 < p2_dist: + p2_dist = dist_p2 + p2_key = key + + p1_idx=p1_key + p2_idx=p2_key + + # lines[indx]=[[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]] + # lines.append([[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]]) + # if [[way_pts[p1_idx][0],way_pts[p1_idx][1]]!=[way_pts[p2_idx][0],way_pts[p2_idx][1]]]: + + #LINES DICTIONARY: (WAYPOINT1_ID, WAYPOINT2_ID, EDGE ID) = [[x1,y1],[x2,y2]] + lines[(p1_idx,p2_idx,indx)]=[[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]] + + #DRAW LINES + line = Marker() + line.header.frame_id = "map" + line.header.stamp = rospy.Time.now() + line.ns = "edges" + line.id = indx + indx+=1 + line.type = Marker.LINE_STRIP + line.action = Marker.ADD + line.scale.x = 0.3 + line.color.r = 0.0 + line.color.g = 1.0 + line.color.b = 0.0 + line.color.a = 1.0 + + point1 = Point() + point1.x = way_pts[p1_idx][0] + point1.y = way_pts[p1_idx][1] + point1.z = 0.0 + + point2 = Point() + point2.x = way_pts[p2_idx][0] + point2.y = way_pts[p2_idx][1] + point2.z = 0.0 + + line.points.append(point1) + line.points.append(point2) + line_pub.publish(line) + time.sleep(0.1) + cv2.line(im_orig, (int((way_pts[p1_idx][0]+10)/0.05), int((way_pts[p1_idx][1]+10)/0.05)), (int((way_pts[p2_idx][0]+10)/0.05), int((way_pts[p2_idx][1]+10)/0.05)), (255, 0, 0), 1) + + #CALCULATE THE PERIMETER + perimeter = cv2.arcLength(contour,True) + #DIVIDE PERIMETER BY 2 TO GET LENGTH AND SUBTRACT 10 BECAUSE WHEN WE DRAW BLACK CIRCLES OF RADIUS 10, 5 PIXELS WILL BE REMOVED FROM EACH SIDE, AND MULTIPLY WITH 0.05 TO CONVERT IT TO METRES + perimeter = ((perimeter/2)+10)*0.05 + + ######################## + ######################## + #MAKE THE GRAPH + if p1_idx not in graph: + graph[p1_idx] = { + 'node_pos': way_pts[p1_idx], + 'outward_edges': { + p2_idx: perimeter + } + } + else: + graph[p1_idx]['outward_edges'][p2_idx] = perimeter + + if p2_idx not in graph: + graph[p2_idx] = { + 'node_pos': way_pts[p2_idx], + 'outward_edges': { + p1_idx: perimeter + } + } + else: + graph[p2_idx]['outward_edges'][p1_idx] = perimeter + + + # for i in graph: + # cv2.putText(im_orig, str(i), (graph[i]["node_pos"][0] + 15, graph[i]["node_pos"][1] + 15), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1) + + # for i in corners: + # x,y = i.ravel() + # cv2.circle(im_orig,(x,y),15,(0,255,0),-1) + + cv2.imwrite("output_graph.png",im_orig) + + #IF A WAYPOINT HAS EDGE WITH ITSELF THEN REMOVE THE EDGE + for node, node_data in graph.items(): + if node in node_data['outward_edges']: + del node_data['outward_edges'][node] + print("removed") + # for i in graph: + # print(i,graph[i]) + for i in range(0,5): + print("") + print("DONE MAKING THE GRAPH") + for i in range(0,5): + print("") + + # IF THIRD MENU ITEM IS SELECTED (MAKE EDGE) THEN: + if feedback.menu_entry_id==3: + global count + global make_edge_bw + #APPEND THE ID OF THE MARKER THAT WE CLICKED TO make_edge_bw LIST + make_edge_bw.append(int(feedback.marker_name)) + #IF MORE THAN TWO POINTS ARE SELECTED + if len(make_edge_bw) > 2: + #KEEP FIRST TWO + make_edge_bw=[make_edge_bw[0],make_edge_bw[1]] + + print(make_edge_bw) + print("") + print("") + print(make_edge_bw) + print("") + print("") + #WHEN TWO POINTS ARE SELECTED + if len(make_edge_bw)==2: + try: + # global lines + count+1 + print("BOTH POINTS SELECTED") + #CALCULATE EUCLIDIAN DISTANCE BETWEEN THE WAYPOINTS + eu_dist = ((way_pts[make_edge_bw[0]][0] - way_pts[make_edge_bw[1]][0])**2 + (way_pts[make_edge_bw[0]][1] - way_pts[make_edge_bw[1]][1])**2)**(0.5) + + #ADD THE EDGE TO GRAPH + graph[make_edge_bw[0]]["outward_edges"][make_edge_bw[1]]=eu_dist + graph[make_edge_bw[1]]["outward_edges"][make_edge_bw[0]]=eu_dist + print(graph[make_edge_bw[0]]) + print(graph[make_edge_bw[1]]) + + #DRAW THE EDGE + line = Marker() + line.header.frame_id = "map" + line.header.stamp = rospy.Time.now() + line.ns = "edges" + + ids = [] + # for i in lines.keys: + # print(i) + for i in lines: + # print(i) + ids.append(int(i[2])) + id = max(ids)+1 + line.id = id + line.type = Marker.LINE_STRIP + line.action = Marker.ADD + line.scale.x = 0.3 + line.color.r = 0.0 + line.color.g = 1.0 + line.color.b = 0.0 + line.color.a = 1.0 + + point1 = Point() + point1.x = way_pts[make_edge_bw[0]][0] + point1.y = way_pts[make_edge_bw[0]][1] + point1.z = 0.0 + + point2 = Point() + point2.x = way_pts[make_edge_bw[1]][0] + point2.y = way_pts[make_edge_bw[1]][1] + point2.z = 0.0 + + line.points.append(point1) + line.points.append(point2) + line_pub.publish(line) + # lines[len(lines)+count]=[[ way_pts[make_edge_bw[0]][0], way_pts[make_edge_bw[0]][1]],[ way_pts[make_edge_bw[1]][0], way_pts[make_edge_bw[1]][1]]] + # lines.append([[way_pts[make_edge_bw[0]][0],way_pts[make_edge_bw[0]][1]],[way_pts[make_edge_bw[1]][0], way_pts[make_edge_bw[1]][1],2]]) + lines[(make_edge_bw[0],make_edge_bw[1],id)]=[[way_pts[make_edge_bw[0]][0],way_pts[make_edge_bw[0]][1]],[way_pts[make_edge_bw[1]][0], way_pts[make_edge_bw[1]][1]]] + #EMPTY THE LIST SO WE CAN USE IT AGAIN + make_edge_bw=[] + except Exception as e: + print(e) + make_edge_bw=[] + + #IF 4TH MENU ITEM (DELETE EDGE) IS SELECTED + if feedback.menu_entry_id==4: + print("YOU PRESSED DELETE") + global delete_edge_bw + #APPEND THE ID OF THE MARKER WE CLICKED TO THE LIST + delete_edge_bw.append(int(feedback.marker_name)) + print(" ") + print(delete_edge_bw) + print("") + #IF TWO ARE SELECTED + if len(delete_edge_bw)==2: + print("BEFORE DELETE :") + print(graph[delete_edge_bw[0]]) + print(graph[delete_edge_bw[1]]) + print("AFTER DELETE") + #DELETE FROM GRAPH + del graph[delete_edge_bw[0]]["outward_edges"][delete_edge_bw[1]] + del graph[delete_edge_bw[1]]["outward_edges"][delete_edge_bw[0]] + print(graph[delete_edge_bw[0]]) + print(graph[delete_edge_bw[1]]) + + print("NO OF LINES: ",len(lines)) + + #SEARCH FOR THE ID OF THE LINE MARKER BETWEEN THE SELECTED WAYPOINTS AND REMOVE THAT MARKER + for i in lines.keys(): + if [i[0],i[1]]==delete_edge_bw: + del lines[i] + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.id = i[2] + line.action = line.DELETE + line_pub.publish(line) + print("REMOVEDDDDDDDDDDDDDDDDDDDDDDDDDDDDd") + for i in lines.keys(): + if [i[1],i[0]]==delete_edge_bw: + del lines[i] + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.id = i[2] + line.action = line.DELETE + line_pub.publish(line) + print("REMOVEDDDDDDDDDDDDDDDDDDDDDDDDDDDDd") + + #EMPTY THE LIST SO THAT WE CAN USE IT AGAIN + delete_edge_bw=[] + + +#code this: +# save_to yaml do baar press hoga first time bade pts save aur uske baad nae banao waypoints, wo edit krke dusri bar save karo to naya save hoga +#if load previous kia hai to jo files select ki hai wo load hogi, use edit karo aur fir save dabane se save ho jaegi. agar files load ki hai to kitni bhi baar save dabao bas save hi hoga nae points nai banenge. + + #WHEN WE PRESS SAVE TO YAML THE FIRST TIME, IT WILL SAVE THE YAMLS AND THEN CALCULATE INBETWEEN WAYPOINTS, PUBLISH THEM AND CREATE A CONNECTED GRAPH WITH IN BETWEEN WAYPOINTS AND THEN PUBLISH THE EDGES + #IF WE HAVE SELECTED THE LOAD PREVIOUS OPTION THEN NO MATTER HOW MANY TIMES WE PRESS SAVE TO YAML IT WILL SAVE IT AND THEN DO NOTHING (LIKE WILL NOT FIND INBETWEEN POINTS) + if feedback.menu_entry_id==5: + #WE ARE NOT IN LOAD PREVIOUS MODE + if load == 0: + #KEEP A NOT OF HOW MANY TIMES WE HAVE PRESSED SAVE + global press_count + print(press_count) + # graph.clear() + + #IF PRESSED FIRST TIME: + if press_count ==1: + # global lines + print(" ") + print(" ") + print(" ") + print("YOU PRESSED SAVE TO YAMl") + print(" ") + print(" ") + print(" ") + + #SAVE THE YAMLS + file=open(home+"/Downloads/waypoint/output_yaml/connected_graph_low_level.yaml","w") + yaml.dump(graph,file) + file.close() + + file=open(home+"//Downloads/waypoint/output_yaml/way_pts_low_level.yaml","w") + yaml.dump(way_pts,file) + file.close() + + file=open(home+"/Downloads/waypoint/output_yaml/edges_low_level.yaml","w") + yaml.dump(lines,file) + print(lines) + file.close() + + #INCREMENT PRESS COUNT BY ONE + press_count+=1 + + #CLEAR THE LINE + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.action = line.DELETEALL + line_pub.publish(line) + + img = gray + img = cv2.flip(img, 0) + img = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY)[1] + + corners = cv2.goodFeaturesToTrack(img, 1000, 0.375, 50) + corners = np.int0(corners) + for i in corners: + x, y = i.ravel() + cv2.circle(img, (x, y), 10, 0, -1) + + _, contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) + + #FIND INBETWEEN WAYPOINTS AND THEN APPEND TO WAYPOINTS DICTIONARY AND THEN CALCULATE THE GRAPH AGAIN + import math + keypoints = [] + global index + interval = 200 + min_distance = 150 + # keys_way_pts = list(way_pts.keys()) + for i in list(way_pts.values()): + pt = [(i[0]+10)/0.05,(i[1]+10)/0.05] + keypoints.append(pt) + for contour in contours: + points = contour.reshape(-1, 2) + for i in range(0, len(points), interval):# + keypoint = tuple(points[i])# + #if it is not too close to any previously added point then only append + if not any(math.sqrt((keypoint[0]-kp[0])**2 + (keypoint[1]-kp[1])**2) < min_distance for kp in keypoints): + keypoints.append(keypoint) + cv2.circle(img, (int(keypoint[0]),int(keypoint[1])),10,0,-1) + way_pts[index] = [float(keypoint[0] * 0.05 - 10.0),float(keypoint[1] * 0.05 - 10.0)] + x=way_pts[index][0] + y=way_pts[index][1] + position = Point(x, y, 0) + make6DofMarker( False, InteractiveMarkerControl.NONE, position, True,name=str(index)) + server.applyChanges() + index+= 1 + + + _,contours,_ = cv2.findContours(img,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) + + for contour in contours: + extLeft = tuple(contour[contour[:, :, 0].argmin()][0]) + extRight = tuple(contour[contour[:, :, 0].argmax()][0]) + extTop = tuple(contour[contour[:, :, 1].argmin()][0]) + extBot = tuple(contour[contour[:, :, 1].argmax()][0]) + dist_e_w = ((extLeft[0]-extRight[1])**2 + (extLeft[0]-extRight[1])**2 )**0.5 + dist_n_s = ((extTop[0]-extBot[1])**2 + (extTop[0]-extBot[1])**2 )**0.5 + if dist_e_w > dist_n_s: + p1=[extLeft[0],extLeft[1]] + p2=[extRight[0],extRight[1]] + else: + p1=[extTop[0],extTop[1]] + p2=[extBot[0],extBot[1]] + + # cv2.circle(im_orig, (p1[0], p1[1]), 5, (0,0,255), -1) + # cv2.circle(im_orig, (p2[0], p2[1]), 5, (0,0,255), -1) + + way_pts_values=np.array(list(way_pts.values())) + p1_arr = np.array(p1) + p2_arr = np.array(p2) + + p1_key = None + p1_dist = float('inf') + p2_key = None + p2_dist = float('inf') + for key, value in way_pts.items(): + value_arr = np.array(value) + value_arr=(value_arr+10)/0.05 + dist_p1 = np.linalg.norm(value_arr - p1_arr) + if dist_p1 < p1_dist: + p1_dist = dist_p1 + p1_key = key + dist_p2 = np.linalg.norm(value_arr - p2_arr) + if dist_p2 < p2_dist: + p2_dist = dist_p2 + p2_key = key + + p1_idx=p1_key + p2_idx=p2_key + + + # lines[indx]=[[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]] + # lines.append([[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]]) + # if [[way_pts[p1_idx][0],way_pts[p1_idx][1]]!=[way_pts[p2_idx][0],way_pts[p2_idx][1]]]: + lines[(p1_idx,p2_idx,indx)]=[[way_pts[p1_idx][0],way_pts[p1_idx][1]],[way_pts[p2_idx][0],way_pts[p2_idx][1]]] + #DRAW NEW LINES + line = Marker() + line.header.frame_id = "map" + line.header.stamp = rospy.Time.now() + line.ns = "edges" + line.id = indx + indx+=1 + line.type = Marker.LINE_STRIP + line.action = Marker.ADD + line.scale.x = 0.3 + line.color.r = 0.0 + line.color.g = 1.0 + line.color.b = 0.0 + line.color.a = 1.0 + + point1 = Point() + point1.x = way_pts[p1_idx][0] + point1.y = way_pts[p1_idx][1] + point1.z = 0.0 + + point2 = Point() + point2.x = way_pts[p2_idx][0] + point2.y = way_pts[p2_idx][1] + point2.z = 0.0 + + line.points.append(point1) + line.points.append(point2) + line_pub.publish(line) + time.sleep(0.1) + # cv2.line(im_orig, (int((way_pts[p1_idx][0]+10)/0.05), int((way_pts[p1_idx][1]+10)/0.05)), (int((way_pts[p2_idx][0]+10)/0.05), int((way_pts[p2_idx][1]+10)/0.05)), (255, 0, 0), 1) + + perimeter = cv2.arcLength(contour,True) + perimeter = ((perimeter/2)+10)*0.05 + + ######################## + ######################## + if p1_idx not in graph: + graph[p1_idx] = { + 'node_pos': way_pts[p1_idx], + 'outward_edges': { + p2_idx: perimeter + } + } + else: + graph[p1_idx]['outward_edges'][p2_idx] = perimeter + + if p2_idx not in graph: + graph[p2_idx] = { + 'node_pos': way_pts[p2_idx], + 'outward_edges': { + p1_idx: perimeter + } + } + else: + graph[p2_idx]['outward_edges'][p1_idx] = perimeter + + + elif press_count ==2: + #IF PRESSED SECOND TIME JUST SAVE THE YAMLS + for i in range(0,5): + print("") + print("PRESSED SECOND TIME") + for i in range(0,5): + print("") + press_count = 1 + + file=open(home+"/waypoint/output_yaml/connected_graph_high_level.yaml","w") + yaml.dump(graph,file) + file.close() + + + + file=open(home+"/waypoint/output_yaml/way_pts_high_level.yaml","w") + yaml.dump(way_pts,file) + file.close() + + file=open(home+"/waypoint/output_yaml/edges_high_level.yaml","w") + yaml.dump(lines,file) + file.close() + press_count+=1 + + if load == 1: + #IF WE ARE IN LOAD MODE THEN JUST SAVE THE YAMLS + for i in range(0,5): + print("") + print(" SAVED ") + for i in range(0,5): + print("") + press_count = 1 + + file=open(home+"/waypoint/output_yaml/connected_graph__edited.yaml","w") + yaml.dump(graph,file) + file.close() + + + + file=open(home+"/waypoint/output_yaml/way_pts_edited.yaml","w") + yaml.dump(way_pts,file) + file.close() + + file=open(home+"/waypoint/output_yaml/edges_edited.yaml","w") + yaml.dump(lines,file) + + server.clear() + server.applyChanges() + + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.action = line.DELETEALL + line_pub.publish(line) + # print(lines) + file.close() + + #IF INSIDE LOAD PREVIOUS MODE + if feedback.menu_entry_id==6: + global lines + # lines={} + global way_pts + global graph + global load + load = 1 + way_pts={} + print("") + print("") + print("") + print("LOAD PREVIOUS WORK") + print("") + print("") + print("") + #CLEAR THE MARKERS + server.clear() + server.applyChanges() + + #CLEAR THE LINE MARKERS + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.action = line.DELETEALL + line_pub.publish(line) + # print("REMOVEDDDDDDDDDDDDDDDDDDDDDDDDDDDDd") + + #ASK FOR THE PATH OF FILES + lines_path=raw_input("Enter path for edges.yaml :") + graph_path=raw_input("Enter path for connected_graph.yaml :") + way_pts_path=raw_input("Enter path for way_pts.yaml :") + + #IF NO ENTERED, TAKE DEFAULT PATH + if lines_path=="": + lines_path=home+"/waypoint/output_yaml/edges_high_level.yaml" + if graph_path=="": + graph_path=home+"/waypoint/output_yaml/connected_graph_high_level.yaml" + if way_pts_path=="": + way_pts_path=home+"/waypoint/output_yaml/way_pts_high_level.yaml" + + #MAKE DICTINARY FROM YAMLS + with open(lines_path, 'r') as stream: + lines=yaml.load(stream) + + with open(graph_path, 'r') as stream: + # Converts yaml document to python object + graph=yaml.load(stream) + + with open(way_pts_path, 'r') as stream: + # Converts yaml document to python object + way_pts=yaml.load(stream) + + #DRAW THE WAYPOINTS + for i in way_pts: + x=way_pts[i][0] + y=way_pts[i][1] + position = Point(x, y, 0) + make6DofMarker( False, InteractiveMarkerControl.NONE, position, True,name=str(i)) + server.applyChanges() + print("way_pts=",way_pts) + + #DRAW THE LINES + for i in lines: + line = Marker() + line.header.frame_id = "map" + line.ns = "edges" + line.type = Marker.LINE_STRIP + line.header.stamp = rospy.Time.now() + line.action = line.ADD + line.scale.x = 0.3 + line.color.r = 0.0 + line.color.g = 1.0 + line.color.b = 0.0 + line.color.a = 1.0 + line.id=i[2] + + print(i,lines[i]) + print("") + print("") + # print(lines[i][0][1]) + p1_x=lines[i][0][0] + p1_y=lines[i][0][1] + p2_x=lines[i][1][0] + p2_y=lines[i][1][1] + point1 = Point(p1_x,p1_y,0) + + point2 = Point(p2_x,p2_y,0) + + line.points.append(point1) + line.points.append(point2) + line_pub.publish(line) + time.sleep(0.2) + # print(lines) + print("LENGTH :",len(lines)) + + rospy.loginfo( s + ": menu item " + str(feedback.menu_entry_id) + " clicked" + mp + "." ) + elif feedback.event_type == InteractiveMarkerFeedback.POSE_UPDATE: + rospy.loginfo( s + ": pose changed") + + elif feedback.event_type == InteractiveMarkerFeedback.MOUSE_DOWN: + rospy.loginfo( s + ": mouse down" + mp + "." ) + elif feedback.event_type == InteractiveMarkerFeedback.MOUSE_UP: + rospy.loginfo( s + ": mouse up" + mp + "." ) + server.applyChanges() + +def alignMarker( feedback ): + pose = feedback.pose + + pose.position.x = round(pose.position.x-0.5)+0.5 + pose.position.y = round(pose.position.y-0.5)+0.5 + + rospy.loginfo( feedback.marker_name + ": aligning position = " + str(feedback.pose.position.x) + "," + str(feedback.pose.position.y) + "," + str(feedback.pose.position.z) + " to " + + str(pose.position.x) + "," + str(pose.position.y) + "," + str(pose.position.z) ) + + server.setPose( feedback.marker_name, pose ) + server.applyChanges() + +def rand( min_, max_ ): + return min_ + random()*(max_-min_) + +def makeBox( msg ): + marker = Marker() + + marker.type = Marker.CUBE + marker.scale.x = msg.scale * 0.45 + marker.scale.y = msg.scale * 0.45 + marker.scale.z = msg.scale * 0.45 + marker.color.r = 1 + marker.color.g = 0 + marker.color.b = 0 + marker.color.a = 1.0 + + return marker + +def makeBoxControl( msg ): + control = InteractiveMarkerControl() + control.always_visible = True + control.markers.append( makeBox(msg) ) + msg.controls.append( control ) + return control + +def saveMarker( int_marker ): + server.insert(int_marker, processFeedback) + + +##################################################################### +# Marker Creation + +def make6DofMarker( fixed, interaction_mode, position, show_6dof = False, name=""): + int_marker = InteractiveMarker() + int_marker.header.frame_id = "map" + int_marker.pose.position = position + int_marker.scale = 5 + + int_marker.name = name + int_marker.description = name + + # insert a box + makeBoxControl(int_marker) + int_marker.controls[0].interaction_mode = interaction_mode + + if fixed: + int_marker.name += "_fixed" + int_marker.description += "\n(fixed orientation)" + + if interaction_mode != InteractiveMarkerControl.NONE: + control_modes_dict = { + InteractiveMarkerControl.MOVE_3D : "MOVE_3D", + InteractiveMarkerControl.ROTATE_3D : "ROTATE_3D", + InteractiveMarkerControl.MOVE_ROTATE_3D : "MOVE_ROTATE_3D" } + int_marker.name += "_" + control_modes_dict[interaction_mode] + int_marker.description = "3D Control" + if show_6dof: + int_marker.description += " + 6-DOF controls" + int_marker.description += "\n" + control_modes_dict[interaction_mode] + + if show_6dof: + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 1 + control.orientation.y = 0 + control.orientation.z = 0 + control.name = "rotate_x" + control.interaction_mode = InteractiveMarkerControl.ROTATE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 1 + control.orientation.y = 0 + control.orientation.z = 0 + control.name = "move_x" + control.interaction_mode = InteractiveMarkerControl.MOVE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 0 + control.orientation.y = 1 + control.orientation.z = 0 + control.name = "rotate_z" + control.interaction_mode = InteractiveMarkerControl.ROTATE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 0 + control.orientation.y = 1 + control.orientation.z = 0 + control.name = "move_z" + control.interaction_mode = InteractiveMarkerControl.MOVE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 0 + control.orientation.y = 0 + control.orientation.z = 1 + control.name = "rotate_y" + control.interaction_mode = InteractiveMarkerControl.ROTATE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + control = InteractiveMarkerControl() + control.orientation.w = 1 + control.orientation.x = 0 + control.orientation.y = 0 + control.orientation.z = 1 + control.name = "move_y" + control.interaction_mode = InteractiveMarkerControl.MOVE_AXIS + if fixed: + control.orientation_mode = InteractiveMarkerControl.FIXED + int_marker.controls.append(control) + + server.insert(int_marker, processFeedback) + menu_handler.apply( server, int_marker.name ) + + +def makeMenuMarker(position): + int_marker = InteractiveMarker() + int_marker.header.frame_id = "base_link" + int_marker.pose.position = position + int_marker.scale = 1 + + int_marker.name = "context_menu" + int_marker.description = "Context Menu\n(Right Click)" + + # make one control using default visuals + control = InteractiveMarkerControl() + control.interaction_mode = InteractiveMarkerControl.MENU + control.description="Options" + control.name = "menu_only_control" + int_marker.controls.append(copy.deepcopy(control)) + + # make one control showing a box + marker = makeBox( int_marker ) + control.markers.append( marker ) + control.always_visible = True + int_marker.controls.append(control) + + server.insert(int_marker, processFeedback) + menu_handler.apply( server, int_marker.name ) + +def callback(msg): + global graph + rospy.loginfo("coordinates:x=%f y=%f" %(msg.point.x,msg.point.y)) + name_of_waypt=max([k for k in way_pts])+1 + way_pts[name_of_waypt]=[msg.point.x,msg.point.y] + print("added waypoint :",name_of_waypt) + position=Point(msg.point.x, msg.point.y, 0) + make6DofMarker( False, InteractiveMarkerControl.NONE, position, True,name=str(name_of_waypt)) + graph[name_of_waypt] = {'node_pos': way_pts[name_of_waypt],'outward_edges': {}} + server.applyChanges() + + + +##################################### +# # +# CODE STARTS FROM HERE # +# # +##################################### + +#get path to home directory +home = os. path. expanduser("~") +path = home + "/Downloads/waypoint/input_images/skeleton_neom.png" +print(path) +#load the input image +bw_map = cv2.imread(home+"/Downloads/waypoint/input_images/skeleton_neom.png") + +global im +#we have not selected load previous option so load = 0 +load = 0 + +#find the corners +gray = cv2.cvtColor(bw_map, cv2.COLOR_BGR2GRAY) +im = cv2.threshold(bw_map, 100, 255, cv2.THRESH_BINARY_INV)[1] +im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY ) +im = cv2.flip(im, 0) +# max_x,max_y=im.shape +corners = cv2.goodFeaturesToTrack(im, 1000, 0.375, 50) +corners = np.int0(corners) +global way_pts +way_pts = {} +global index +index=0 + +for i in corners: + x, y = i.ravel() + #add detected corners to the way_pts dictionary after converting from image coordinates to map coordinates + way_pts[index]=[float(x * 0.05 - 10.0),float(y * 0.05 - 10.0)] + # cv2.circle(bw_map, (x, y), 30, (0,0,255), -1) + # print(i) + index+=1 + + +#MAIN CODE +if __name__=="__main__": + rospy.init_node("basic_controls") + br = TransformBroadcaster() + rospy.point_pub = rospy.Subscriber('/clicked_point', PointStamped, callback) + + # create a timer to update the published transforms + rospy.Timer(rospy.Duration(0.01), frameCallback) + + server = InteractiveMarkerServer("basic_controls") + + #add menu options + menu_handler.insert( "Delete waypoint", callback=processFeedback ) + menu_handler.insert( "Make connected graph", callback=processFeedback ) + menu_handler.insert( "Add edge", callback=processFeedback ) + menu_handler.insert( "Delete Edge", callback=processFeedback ) + menu_handler.insert( "Save to YAML", callback=processFeedback) + menu_handler.insert( "Load previous", callback=processFeedback) + + # sub_menu_handle = menu_handler.insert( "Submenu" ) + # menu_handler.insert( "First Entry", parent=sub_menu_handle, callback=processFeedback ) + # menu_handler.insert( "Second Entry", parent=sub_menu_handle, callback=processFeedback ) + + index=0 + + #pulish the interactive markers on rviz + for i in way_pts: + x=way_pts[i][0] + y=way_pts[i][1] + position = Point(x, y, 0) + make6DofMarker( False, InteractiveMarkerControl.NONE, position, True,name=str(index)) + index+=1 + + #EXAMPLE TO MAKE DIFFERENT TYPES OF MARKERS + # position = Point(-3, 3, 0) + # make6DofMarker( False, InteractiveMarkerControl.NONE, position, True,name="NISARG") + # position = Point( 0, 3, 0) + # make6DofMarker( True, InteractiveMarkerControl.NONE, position, True) + # position = Point( 3, 3, 0) + # makeRandomDofMarker( position ) + # position = Point(-3, 0, 0) + # make6DofMarker( False, InteractiveMarkerControl.ROTATE_3D, position, False) + # position = Point( 0, 0, 0) + # make6DofMarker( False, InteractiveMarkerControl.MOVE_ROTATE_3D, position, True ) + # position = Point( 3, 0, 0) + # make6DofMarker( False, InteractiveMarkerControl.MOVE_3D, position, False) + # position = Point(-3, -3, 0) + # makeViewFacingMarker( position ) + # position = Point( 0, -3, 0) + # makeQuadrocopterMarker( position ) + # position = Point( 3, -3, 0) + # makeChessPieceMarker( position ) + # position = Point(-3, -6, 0) + # makePanTiltMarker( position ) + # position = Point( 0, -6, 0) + # makeMovingMarker( position ) + # position = Point( 3, -6, 0) + # makeMenuMarker( position ) + #number of detected waypoints + + print(len(way_pts)) + server.applyChanges() + rospy.spin() \ No newline at end of file diff --git a/waypt_rviz_config.rviz b/waypt_rviz_config.rviz new file mode 100644 index 0000000..30032dc --- /dev/null +++ b/waypt_rviz_config.rviz @@ -0,0 +1,143 @@ +Panels: + - Class: rviz/Displays + Help Height: 78 + Name: Displays + Property Tree Widget: + Expanded: + - /Global Options1 + - /Status1 + - /Map1 + Splitter Ratio: 0.5 + Tree Height: 728 + - Class: rviz/Selection + Name: Selection + - Class: rviz/Tool Properties + Expanded: + - /2D Pose Estimate1 + - /2D Nav Goal1 + - /Publish Point1 + Name: Tool Properties + Splitter Ratio: 0.5886790156364441 + - Class: rviz/Views + Expanded: + - /Current View1 + Name: Views + Splitter Ratio: 0.5 + - Class: rviz/Time + Experimental: false + Name: Time + SyncMode: 0 + SyncSource: "" +Preferences: + PromptSaveOnExit: true +Toolbars: + toolButtonStyle: 2 +Visualization Manager: + Class: "" + Displays: + - Alpha: 0.5 + Cell Size: 1 + Class: rviz/Grid + Color: 160; 160; 164 + Enabled: true + Line Style: + Line Width: 0.029999999329447746 + Value: Lines + Name: Grid + Normal Cell Count: 0 + Offset: + X: 0 + Y: 0 + Z: 0 + Plane: XY + Plane Cell Count: 10 + Reference Frame: + Value: true + - Alpha: 0.30000001192092896 + Class: rviz/Map + Color Scheme: map + Draw Behind: false + Enabled: true + Name: Map + Topic: /map + Unreliable: false + Use Timestamp: false + Value: true + - Class: rviz/InteractiveMarkers + Enable Transparency: true + Enabled: true + Name: InteractiveMarkers + Show Axes: false + Show Descriptions: true + Show Visual Aids: false + Update Topic: /basic_controls/update + Value: true + - Class: rviz/Marker + Enabled: true + Marker Topic: /edges + Name: Marker + Namespaces: + {} + Queue Size: 100 + Value: true + Enabled: true + Global Options: + Background Color: 48; 48; 48 + Default Light: true + Fixed Frame: map + Frame Rate: 30 + Name: root + Tools: + - Class: rviz/Interact + Hide Inactive Objects: true + - Class: rviz/MoveCamera + - Class: rviz/Select + - Class: rviz/FocusCamera + - Class: rviz/Measure + - Class: rviz/SetInitialPose + Theta std deviation: 0.2617993950843811 + Topic: /initialpose + X std deviation: 0.5 + Y std deviation: 0.5 + - Class: rviz/SetGoal + Topic: /move_base_simple/goal + - Class: rviz/PublishPoint + Single click: true + Topic: /clicked_point + Value: true + Views: + Current: + Angle: 0.030000019818544388 + Class: rviz/TopDownOrtho + Enable Stereo Rendering: + Stereo Eye Separation: 0.05999999865889549 + Stereo Focal Distance: 1 + Swap Stereo Eyes: false + Value: false + Invert Z Axis: false + Name: Current View + Near Clip Distance: 0.009999999776482582 + Scale: 1.6785107851028442 + Target Frame: + Value: TopDownOrtho (rviz) + X: 347.3327941894531 + Y: 425.5577392578125 + Saved: ~ +Window Geometry: + Displays: + collapsed: true + Height: 1025 + Hide Left Dock: true + Hide Right Dock: false + QMainWindow State: 000000ff00000000fd00000004000000000000015600000363fc0200000008fb000000100044006900730070006c006100790073000000003d00000363000000c900fffffffb0000001200530065006c0065006300740069006f006e00000001e10000009b0000005c00fffffffb0000001e0054006f006f006c002000500072006f007000650072007400690065007302000001ed000001df00000185000000a3fb000000120056006900650077007300200054006f006f02000001df000002110000018500000122fb000000200054006f006f006c002000500072006f0070006500720074006900650073003203000002880000011d000002210000017afb0000002000730065006c0065006300740069006f006e00200062007500660066006500720200000138000000aa0000023a00000294fb00000014005700690064006500530074006500720065006f02000000e6000000d2000003ee0000030bfb0000000c004b0069006e0065006300740200000186000001060000030c00000261000000010000010f00000363fc0200000003fb0000001e0054006f006f006c002000500072006f00700065007200740069006500730100000041000000780000000000000000fb0000000a00560069006500770073010000003d00000363000000a400fffffffb0000001200530065006c0065006300740069006f006e010000025a000000b200000000000000000000000200000490000000a9fc0100000001fb0000000a00560069006500770073030000004e00000080000002e100000197000000030000073d0000003efc0100000002fb0000000800540069006d006501000000000000073d000002eb00fffffffb0000000800540069006d00650100000000000004500000000000000000000006280000036300000004000000040000000800000008fc0000000100000002000000010000000a0054006f006f006c00730100000000ffffffff0000000000000000 + Selection: + collapsed: false + Time: + collapsed: false + Tool Properties: + collapsed: false + Views: + collapsed: false + Width: 1853 + X: 67 + Y: 27