forked from computationalgeography/pycatch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfiguration_gw.py
268 lines (215 loc) · 10.6 KB
/
configuration_gw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import pathlib
# define number of hourly timesteps to run
numberOfTimeSteps = 10968
# folder with input files (maps, timeseries)
#inputFolder = "inputs"
#inputFolder = "../switzerland/40m_small_area"
inputFolder = "../switzerland/40m"
# select maps as input parameters and initial values or uniform values over the area
mapsAsInput = False
# Define the number of Monte Carlo samples or particles
# first time users will use 1 and results for that realization are written to
# the folder '1'
nrOfSamples = 1
# when classes of components are initialized, we pass a list with the time steps
# that are reported. These are defined here. In principle for each component
# a different set of time steps can be reported, by just passing another list
# but this version uses three different ones
# definition for components were all timesteps should be reported
#timeStepsToReportAll = list(range(1, numberOfTimeSteps + 1, 1))
timeStepsToReportAll = list(range(100, numberOfTimeSteps + 1, 100))
# used for discharge only
#timeStepsToReportRqs = list(range(1, numberOfTimeSteps + 1, 1))
timeStepsToReportRqs = list(range(100, numberOfTimeSteps + 1, 100))
# definition for components were a subset of timesteps should be reported
#timeStepsToReportSome = list(range(1, numberOfTimeSteps + 1, 1))
timeStepsToReportSome = list(range(100, numberOfTimeSteps + 1, 100))
# switch to report for locations as small numpy files
# mainly used for particle filtering
doReportComponentsDynamicAsNumpy = False
# when True, a particle filtering run is done
# first time users should have this False
filtering = False
# selects whether a single, given, value is used for a number of parameters
# or whether a realization for that parameters is drawn
# first time users will use a single, fixed value for these parameters, so
# use False and search on createRealizations in the script to see which
# parameters are defined like this
createRealizations = False
# switch to swap parameter values between two catchments
# first time users will need to set this to False
swapCatchments = False
# when True, one can read a set of parameters for all Monte Carlo realizations
# from disk (e.g. representing probability distributions from a calibration)
# first time users should have a False here
readDistributionOfParametersFromDisk = False
# switch to define which set of variables are reported
# either 'full' or 'filtering'. These are passed to the class of a component
# where it the variables that are reported can be defined, i.e. either full or filtering
# early users will always use full
#setOfVariablesToReport = 'full'
setOfVariablesToReport = 'filtering'
with_shading = True
#with_shading = False
if with_shading is False:
print("TEMPORARY SHADING SETTING IN CONFIGURATION.py")
#fractionReceivedValue = 1.0
#fractionReceivedFlatSurfaceValue = 1.0
fractionReceivedValue = 0.0
fractionReceivedFlatSurfaceValue = 0.0
################
# model inputs #
################
#########################
# always needed as maps #
#########################
# set clone
cloneString = str(pathlib.Path(inputFolder, "mergeClone.map"))
# digital elevation model (m)
dem = str(pathlib.Path(inputFolder, "mergeDem.map"))
# ldd map
lddMap = str(pathlib.Path(inputFolder, "mergeldd.map"))
# report locations, i.e. outflow points, for instance, at the outlet
locations = str(pathlib.Path(inputFolder, "mergeOutFlowsNominal.map"))
#####################
# timeseries inputs #
#####################
# meteorology
# same value across area (timseries has two columns) except rainfall (two areas, three columns)
rainfallFluxDetermTimeSeries = str(pathlib.Path(inputFolder, "rainfallFluxTwoCatchsJulAugSep0506.tss"))
airTemperatureDetermString = str(pathlib.Path(inputFolder, "airTemperatureArnaJulAugSep0506.tss"))
relativeHumidityDetermString = str(pathlib.Path(inputFolder, "relativeHumidityArnasJulAugSep0506.tss"))
incomingShortwaveRadiationFlatSurfaceString = str(pathlib.Path(inputFolder, "incomingShortwaveRadiationArnasJulAugSep0506.tss"))
windVelocityDetermString = str(pathlib.Path(inputFolder, "windVelocityArnasJulAugSep0506.tss"))
######
# inputs as maps or as uniform (constant) value over the area
######
if mapsAsInput:
# forest (0) or no forest (1), only used when swapCatchments is True
forestNoForest = str(pathlib.Path(inputFolder, "mergeForestNoForest.map"))
areas = str(pathlib.Path(inputFolder, "mergeForestNoForest.map"))
# meteorology
# areas linked to rainfallFluxDetermTimeSeries (area code 1 and 2)
rainfallFluxDetermTimeSeriesAreas = str(pathlib.Path(inputFolder, "mergeArnasSansaNominal.map"))
elevationAboveSeaLevelOfMeteoStationValue = 900.0
# interception
maximumInterceptionCapacityValue = 0.0002
leafAreaIndexValue = str(pathlib.Path(inputFolder, "mergeVegLAIFS.map"))
# surface storage
maxSurfaceStoreValue = 0.001
# infiltration
ksatValue = 0.0163
initialSoilMoistureFractionFromDiskValue = str(pathlib.Path(inputFolder, "mergeFieldCapacityFractionFS.map"))
soilPorosityFractionValue = str(pathlib.Path(inputFolder, "mergePorosityFractionFS.map"))
# regolith geometry
regolithThicknessHomogeneousValue = 1.0
# groundwater layer geometry
groundWaterLayerThicknessHomogeneousValue = 5.0
#groundWaterLayerThicknessHomogeneousValue = 0.01
# location of the stream, used to adjust regolith thickness there
streamValue = str(pathlib.Path(inputFolder, "mergeStream.map"))
# subsurface water
#saturatedConductivityMetrePerDayValue = 37.0
#limitingPointFractionValue = str(pathlib.Path(inputFolder, "mergeLimitingPointFractionFS.map"))
#mergeWiltingPointFractionFSValue = str(pathlib.Path(inputFolder, "mergeWiltingPointFractionFS.map"))
#fieldCapacityFractionValue = str(pathlib.Path(inputFolder, "mergeFieldCapacityFractionFS.map"))
#saturatedConductivityMetrePerDayValue = 0.008 # sand 8, silty sand 1, silt 0.008, clay much lower
#saturatedConductivityMetrePerDayValue = 40.0
saturatedConductivityMetrePerDayValue = 1.0
limitingPointFractionValue = 0.2
mergeWiltingPointFractionFSValue = 0.1
fieldCapacityFractionValue = 0.4
# evapotranspiration
# penman
multiplierMaxStomatalConductanceValue = 1.0
albedoValue = str(pathlib.Path(inputFolder, "mergeVegAlbedoFS.map"))
maxStomatalConductanceValue = str(pathlib.Path(inputFolder, "mergeVegStomatalFS.map"))
vegetationHeightValue = str(pathlib.Path(inputFolder, "mergeVegHeightFS.map"))
else:
# forest (0) or no forest (1), only used when swapCatchments is True
forestNoForest = 0
areas = 0
# meteorology
# areas linked to rainfallFluxDetermTimeSeries (area code 1 and 2)
rainfallFluxDetermTimeSeriesAreas = 1
elevationAboveSeaLevelOfMeteoStationValue = 900.0
# interception
maximumInterceptionCapacityValue = 0.0002
leafAreaIndexValue = 3.0
# surface storage
maxSurfaceStoreValue = 0.001
# infiltration
ksatValue = 0.0163
initialSoilMoistureFractionFromDiskValue = 0.327306
soilPorosityFractionValue = 0.5
# regolith geometry
regolithThicknessHomogeneousValue = 1.0
# groundwater layer geometry
groundWaterLayerThicknessHomogeneousValue = 5.0
#groundWaterLayerThicknessHomogeneousValue = 0.01
# subsurface water
#saturatedConductivityMetrePerDayValue = 37.0
#limitingPointFractionValue = 0.276293
#mergeWiltingPointFractionFSValue = 0.1
#fieldCapacityFractionValue = 0.327306
# simple values for debugging
#saturatedConductivityMetrePerDayValue = 0.008
#saturatedConductivityMetrePerDayValue = 40.0
saturatedConductivityMetrePerDayValue = 1.0 # gravel high, sand 8, silty sand 1, silt 0.008, clay much lower
limitingPointFractionValue = 0.2
mergeWiltingPointFractionFSValue = 0.1
fieldCapacityFractionValue = 0.4
# evapotranspiration
# penman
multiplierMaxStomatalConductanceValue = 1.0
albedoValue = 0.27
maxStomatalConductanceValue = 0.0067
vegetationHeightValue = 1.3
# real time of first time step, duration of time step
# IMPORTANT NOTE: THIS IS NOW UTC TIME ALMOST CERTAINLY AT LEAST FOR SHADING
print("# IMPORTANT NOTE: THIS IS NOW UTC TIME ALMOST CERTAINLY AT LEAST FOR SHADING")
print("# IMPORTANT NOTE: ALSO ONE NEEDS TO ENTER GEOG COORDINATES")
startTimeYearValue = 2005
startTimeMonthValue = 7
startTimeDayValue = 1
timeStepDurationHoursFloatingPointValue = 1.0 # only tested for one hour!!!!
# lat long for shading (solar radiation)
latitudeOfCatchment = 52.12833333
longitudeOfCatchment = 5.19861111
timeZone = "Europe/Madrid"
# calculate upstream totals (with accuflux) in subsurfacewateronelayer module
# and interceptionuptomaxstore module
# at least needed for some reports and possibly for budget checks (if one
# needs these) and almost certainly for report as numpy in subsurfacewateronelayer and
# interceptionuptomaxstore modules (not tested). For normal functioning of the model False is OK
calculateUpstreamTotals = False
#
# Reporting for the model components
#
if setOfVariablesToReport == 'full':
interception_report_rasters = ["Vo", "Vi", "Vgf", "Vms"] # reports of totals (Vot) only make sense if calculateUpstreamTotals is True
evapotrans_report_rasters = ["Ep", "Epc"]
infiltration_report_rasters = ["Ii", "Ij", "Is", "Iks"]
runoff_report_rasters = ["Rq"]
shading_report_rasters = ["Mfs", "Msc", "Msh"]
subsurface_report_rasters = ["Gs", "Go", "Gppa", "Gkun"] # reports of totals (Gxt, Got) only make sense if calculateUpstreamTotals is True
subsurface_report_rasters_gw = ["GGs", "GGgwd", "GGpcr", "GGpcrf", "GGdos", "GGkun"] # reports of totals (Gxt, Got) only make sense if calculateUpstreamTotals is True
surfacestore_report_rasters = ["Ss", "Sc"]
randomparameters_report_rasters = ["RPic", "RPks", "RPrt", "RPsc", "RPmm"]
exchange_report_rasters = ["Xrc"]
soilwashMMF_report_rasters = ["Wde", "Wdm", "Wfl", "Wdt", "Wtc", "Wdr", "Wdmc"]
elif setOfVariablesToReport == 'filtering':
interception_report_rasters = [] # reports of totals (Vot) only make sense if calculateUpstreamTotals is True
evapotrans_report_rasters = []
infiltration_report_rasters = []
runoff_report_rasters = ["Rq"]
#shading_report_rasters = []
shading_report_rasters = ["Mfs", "Msc", "Msh"]
subsurface_report_rasters = ["Gs", "Gppa", "Gdos", "Gkun"] # reports of totals (accuflux) only make sense if calculateUpstreamTotals is True
subsurface_report_rasters_gw = ["GGs", "GGgwd", "GGpcr", "GGpcrf", "GGdos", "GGkun"] # reports of totals (accuflux) only make sense if calculateUpstreamTotals is True
surfacestore_report_rasters = []
#randomparameters_report_rasters = ["RPic", "RPks", "RPrt", "RPsc", "RPmm"]
randomparameters_report_rasters = []
#exchange_report_rasters = ["Xrc", "Xra"]
exchange_report_rasters = []
soilwashMMF_report_rasters = ["Wde", "Wdm", "Wfl", "Wdt", "Wtc", "Wdr", "Wdmc"]