forked from computationalgeography/pycatch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_weekly.py
executable file
·821 lines (664 loc) · 36.3 KB
/
main_weekly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
# general
import sys
import datetime
from collections import deque
import glob
import math
sys.path.append("pcrasterModules/")
# from PCRaster modules
import generalfunctions
import datetimePCRasterPython
import interceptionuptomaxstore
import surfacestore
import infiltrationonlyksat
import subsurfacewateronelayer
import runoffaccuthreshold
import rainfalleventsfromgammadistribution
import exchangevariables_weekly
import soilwashMMF
import regolith
import bedrockweathering
import evapotranspirationsimple
import biomassmodifiedmay
import baselevel
import creep
import configuration_weekly as cfg
# PCRaster itself
from pcraster import *
from pcraster.framework import *
if cfg.fixedStates:
cfg.numberOfTimeSteps=52*50
fixedStatesReg=spatial(scalar(float(sys.argv[1])))
fixedStatesBio=spatial(scalar(float(sys.argv[2])))
timeStepsWithStatsCalculated = range(cfg.intervalForStatsCalculated, \
cfg.numberOfTimeSteps,cfg.intervalForStatsCalculated)
def calculateGapFractionAndMaxIntStoreFromLAI(leafAreaIndex):
maximumInterceptionCapacityPerLAI=scalar(0.001)
gapFraction=exp(-0.5*leafAreaIndex) # equation 40 in Brolsma et al 2010a
maximumInterceptionStore=maximumInterceptionCapacityPerLAI*leafAreaIndex
return gapFraction, maximumInterceptionStore
class CatchmentModel(DynamicModel,MonteCarloModel):
def __init__(self):
DynamicModel.__init__(self)
MonteCarloModel.__init__(self)
setclone('inputs_weekly/clone.map')
# fix the seed for random functions
setrandomseed(101)
if cfg.filtering:
ParticleFilterModel.__init__(self)
def premcloop(self):
self.clone=boolean("inputs_weekly/clone.map")
self.numberOfCellsOnMap=maptotal(ifthenelse(self.clone,scalar(1),scalar(1)))
# not essential this code
# used for fixedStatesLoop.py
# edgesMap=generalfunctions.edgeZone(self.clone,2.1)
# self.mlocs=uniqueid(~ edgesMap)
# self.report(self.mlocs,'testMap')
# locations where values are reported as a numpy array to disk
self.mlocs=nominal("inputs_weekly/mlocs") # multiple report locations, read from 'mlocs.map'
self.aLocation=self.mlocs
# zone reported at each report location
if cfg.fixedStates:
# option 2 used for fixedStatesLoop.py
# one big zone, resulting in the same value for each report
# location
edgesMap=generalfunctions.edgeZone(self.clone,2.1)
self.zoneMap=ifthen(~ edgesMap,boolean(1))
self.report(self.zoneMap,'testMap')
else:
# option 1 for normal runs, zones across the hillslope for each
# location on mlocs
self.zoneMap=nominal("inputs_weekly/zonsc.map")
# zone for average of map (excluding bottom row)
import generalfunctions
edgesMap=generalfunctions.edgeZone(self.clone,2.1)
self.areaForAverage=ifthen(~ edgesMap,boolean(1))
self.allLocations=nominal("inputs_weekly/mlocs")
self.oneLocation=nominal(cover(self.allLocations == 5,0))
self.createInstancesPremcloop()
self.durationHistory=207
# time step duration in hours, typically (and only tested) one week, i.e. 7.0*24.0
self.timeStepDuration = 7.0 * 24.0
def initial(self):
# TIME BEING DIVIDE BY 100 TO AVOID IT RUNS TOO LONG - DK 210519 not clear what this comment is
self.initializeTime(2001,2,26,self.timeStepDuration)
self.createInstancesInitial()
self.d_exchangevariables.upwardSeepageFlux=scalar(0)
self.d_exchangevariables.evapFromSoilMultiplier=scalar(1)
self.timeStepDurationYears=self.timeStepDuration/(365.0*24.0)
self.actualAbstractionFluxFromSubsurface=0.0
# functions and settings for calculating statistics
self.historyOfSoilMoistureFraction=deque([])
self.historyOfBiomass=deque([])
self.historyOfRegolithThickness=deque([])
self.historyOfDem=deque([])
self.historyOfTotQ=deque([])
nrSampleLocs=100
fractionShortDistance=0.4
separationDistance=3
import generalfunctions # not sure why this needs to be imported again
self.samples=generalfunctions.samplingScheme(self.clone, nrSampleLocs, fractionShortDistance, separationDistance,0,0)
#self.report(self.samples,'samples')
self.someLocs=pcrne(self.samples,0)
# initial setting for saving grazing pressure
self.grazingPressureArray=numpy.empty([0])
# budgets
self.d_exchangevariables.cumulativePrecipitation=scalar(0)
# initial values
self.grazingRate=0.0
self.runoffMetreWaterDepthPerHour=scalar(0.0)
self.creepDeposition=spatial(scalar(0.0))
if cfg.reportAdHocTimeseries:
self.biomassTss=TimeoutputTimeseries("biomass", self, self.oneLocation, noHeader=True)
self.soilDepthTss=TimeoutputTimeseries("soildepth", self, self.oneLocation, noHeader=True)
self.biomassJumpTss=TimeoutputTimeseries("biomass_jumped", self, self.oneLocation, noHeader=True)
self.soilDepthJumpTss=TimeoutputTimeseries("soildepth_jumped", self, self.oneLocation, noHeader=True)
self.biomassJump = boolean(0)
self.soilDepthJump = boolean(0)
def dynamic(self):
import generalfunctions # not sure why this needs to be imported again
#option to print time info
#print self.currentTimeStep()
# time
#self.d_dateTimePCRasterPython.update()
#timeDatetimeFormat=self.d_dateTimePCRasterPython.getTimeDatetimeFormat()
## biomass
if cfg.fixedStates:
self.d_regolithdemandbedrock.setNewRegolith(spatial(scalar(fixedStatesReg)))
self.d_biomassModifiedMay.setNewBiomass(spatial(scalar(fixedStatesBio)))
##################
# grazing pressure driver
# this below increases grazing pressure and then reduces it again
# grazingRate is in kg m-2 h-1, typical 0.5 / (365*24)
# note that in the paper it is kg m-2 year-1 and it is up to about 2.5 kg m-2 year -1
# this code could be replaced by reading values from disk and assiging to the
# variable self.grazingRate
# you may want to use the build-in functions returning the time step number and the
# number of the realization:
# print(self.currentTimeStep(), self.currentSampleNumber())
# increase then decrease in grazing pressure
#grazingRateIncreaseTotal=0.0003
#grazingRateIncrease=grazingRateIncreaseTotal/(cfg.numberOfTimeSteps/2.0)
#if self.currentTimeStep() < (cfg.numberOfTimeSteps/2.0):
# self.grazingRate=self.grazingRate+grazingRateIncrease
#else:
# self.grazingRate=self.grazingRate-grazingRateIncrease
# increase only in grazing pressure
grazingRateIncreaseTotal=0.0004
grazingRateIncrease=grazingRateIncreaseTotal/(cfg.numberOfTimeSteps)
self.grazingRate=self.grazingRate+grazingRateIncrease
##################
# collect grazing pressures in one numpy array for reporting
self.grazingPressureArray=numpy.append(self.grazingPressureArray,self.grazingRate)
runoffMetreWaterDepthPerWeek=self.runoffMetreWaterDepthPerHour*cfg.theDurationOfRainstorm
self.biomass,self.LAI=self.d_biomassModifiedMay.update(self.actualAbstractionFluxFromSubsurface, \
runoffMetreWaterDepthPerWeek,self.grazingRate)
# update gap fraction and maximum interception store
gapFraction,maxIntStore=calculateGapFractionAndMaxIntStoreFromLAI(self.LAI)
self.d_interceptionuptomaxstore.setGapFraction(gapFraction)
self.d_interceptionuptomaxstore.setMaximumStore(maxIntStore)
# update stone cover for erosion
fractionOfVegetationAboveSoil=0.7
vegetationCoverForErosion=(1.0-gapFraction)*fractionOfVegetationAboveSoil
self.d_soilwashMMF.updateStoneOrVegetationCover(vegetationCoverForErosion)
# precipitation
isRaining,rainfallFlux,rainfallAmount= self.d_rainfalleventsfromgammadistribution.getRainstorm()
self.d_exchangevariables.cumulativePrecipitation= \
self.d_exchangevariables.cumulativePrecipitation+rainfallFlux*self.timeStepDuration
if isRaining:
# interception store
actualAdditionFluxToInterceptionStore=self.d_interceptionuptomaxstore.addWater(rainfallFlux)
throughfallFlux=rainfallFlux-actualAdditionFluxToInterceptionStore
# surface store
# time being no upward seepage
#totalToSurfaceFlux=throughfallFlux+self.d_exchangevariables.upwardSeepageFlux
totalToSurfaceFlux=throughfallFlux
potentialToSurfaceStoreFlux=self.d_surfaceStore.potentialToFlux()
# potential infiltration
self.d_infiltrationonlyksat.setSaturatedConductivityFluxAsFunctionOfBiomass(self.biomass)
potentialHortonianInfiltrationFlux=self.d_infiltrationonlyksat.potentialInfiltrationFluxFunction()
maximumSaturatedOverlandFlowInfiltrationFlux=self.d_subsurfaceWaterOneLayer.getMaximumAdditionFlux()
potentialInfiltrationFlux=min(potentialHortonianInfiltrationFlux,maximumSaturatedOverlandFlowInfiltrationFlux)
# abstraction from surface water
potentialAbstractionFromSurfaceWaterFlux=potentialToSurfaceStoreFlux + potentialInfiltrationFlux
actualAbstractionFromSurfaceWaterFlux,runoffCubicMetrePerHour=self.d_runoffAccuthreshold.update( \
totalToSurfaceFlux,potentialAbstractionFromSurfaceWaterFlux)
potentialOutSurfaceStoreFlux=self.d_surfaceStore.potentialOutFlux()
# infiltration
availableForInfiltrationFlux=potentialOutSurfaceStoreFlux+actualAbstractionFromSurfaceWaterFlux
availableForInfiltrationNotExceedingMaximumSaturatedOverlandFlowFlux=min( \
availableForInfiltrationFlux,maximumSaturatedOverlandFlowInfiltrationFlux)
actualInfiltrationFlux=self.d_infiltrationonlyksat.update( \
availableForInfiltrationNotExceedingMaximumSaturatedOverlandFlowFlux)
# surface store
surfaceStoreChange=actualAbstractionFromSurfaceWaterFlux-actualInfiltrationFlux
self.d_surfaceStore.update(surfaceStoreChange)
actualAdditionFlux=self.d_subsurfaceWaterOneLayer.addWater(actualInfiltrationFlux)
# empty it again
self.d_surfaceStore.emptyIt()
# surface wash
self.runoffMetreWaterDepthPerHour=runoffCubicMetrePerHour/cellarea()
netDeposition, netDepositionMetre, lateralFluxKg, totalDetachKgPerCell, transportCapacityKgPerCell= \
self.d_soilwashMMF.calculateWash( \
self.runoffMetreWaterDepthPerHour,rainfallFlux,throughfallFlux)
# LET OP: dit is metre flux, maar dat zou het zijn als er slechts 1 regenbui is per jaar
# het is dus de ene week uitgemiddeld over een jaar
# om echt iets te krijgen met een eenheid m/jaar (dwz wat 'zou' de depositie zijn
# als dit event elke week zou optreden), moet dit keer 52 weken
# hetzelfde geldt voor actual deposition flux hieronder
netDepositionMetreFlux=netDepositionMetre/self.timeStepDurationRegolithInYears
##LDD, surface##
if cfg.changeGeomorphology:
actualDepositionFlux=self.d_regolithdemandbedrock.updateWithDeposition(netDepositionMetreFlux)
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
amountOfMoistureThickNetAdded=self.d_subsurfaceWaterOneLayer.updateRegolithThickness(regolithThickness)
self.d_soilwashMMF.setSurfaceProperties(surfaceLdd,dem)
self.d_runoffAccuthreshold.setSurfaceProperties(surfaceLdd)
else:
# surface wash
netDeposition, netDepositionMetre, lateralFluxKg, totalDetachKgPerCell, transportCapacityKgPerCell= \
self.d_soilwashMMF.noWash()
actualDepositionFlux=spatial(scalar(0))
self.runoffMetreWaterDepthPerHour=scalar(0)
if cfg.jumpsInRegolithAndBiomass:
regolithJumpOccurs = random.random() < (1.0/(10.0*52.0))
if regolithJumpOccurs:
self.soilDepthJump = boolean(1)
# retrieve regolith thickness
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
# calculate average of regolith thickness
averageRegolithThickness=generalfunctions.mapaverage(regolithThickness)
# calculate variation in regolith thickness, mean over map is zero
regolithVariationInThickness=regolithThickness-averageRegolithThickness
# draw realization from uniform distribution (single value over whole map)
real = mapuniform() * 0.4
# calculate new 'random' regolith thickness, can be negativ
randomRegolith = real + regolithVariationInThickness
# to be added to end at this new random value
regolithAdded = randomRegolith - regolithThickness
# add the regolith added to the regolith, this will make sure that not more is removed than available
actualDepositionFlux=self.d_regolithdemandbedrock.updateWithDeposition(regolithAdded)
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
amountOfMoistureThickNetAdded=self.d_subsurfaceWaterOneLayer.updateRegolithThickness(regolithThickness)
self.d_soilwashMMF.setSurfaceProperties(surfaceLdd,dem)
self.d_runoffAccuthreshold.setSurfaceProperties(surfaceLdd)
biomassJumpOccurs = random.random() < (1.0/(10.0*52.0))
if biomassJumpOccurs:
self.biomassJump = boolean(1)
# retrieve biomass thickness
biomassBeforeJump = self.d_biomassModifiedMay.retrieveBiomass()
# calculate average of biomass
averageBiomass = generalfunctions.mapaverage(biomassBeforeJump)
# calculate variation in biomass, mean over map is zero
biomassVariation = biomassBeforeJump - averageBiomass
# draw realization from uniform distribution (single value over whole map)
real = mapuniform() * 2.9
# calculate new 'random' regolith thickness, cut off below zero
randomBiomass = max(real + biomassVariation, self.d_biomassModifiedMay.minimumAllowedBiomass)
self.d_biomassModifiedMay.setNewBiomass(randomBiomass)
if cfg.changeGeomorphology:
# random noise
netDepositionMetreNoiseFlux=normal(1)/5000
##LDD, surface##
actualDepositionNoiseFlux=self.d_regolithdemandbedrock.updateWithDeposition(netDepositionMetreNoiseFlux)
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
# potential evapotranspiration, m/hour
fWaterPotential=self.d_subsurfaceWaterOneLayer.getFWaterPotential()
potentialEvapotranspirationFlux=self.d_evapotranspirationSimple.potentialEvapotranspiration(fWaterPotential,self.biomass)
# evapotranspirate first from interception store
# assume this does not depend on vegetation, and does not influence transpiration
# assume it immediately empties (ie, within a week)
potentialEvaporationFromInterceptionStore=99999.9
actualAbstractionFluxFromInterceptionStore=self.d_interceptionuptomaxstore.abstractWater( \
potentialEvaporationFromInterceptionStore)
# evapotranspirate from subsurface store
potentialEvapotranspirationFluxFromSubsurface= \
max(0.0,potentialEvapotranspirationFlux)
self.actualAbstractionFluxFromSubsurface= \
self.d_subsurfaceWaterOneLayer.abstractWater(potentialEvapotranspirationFluxFromSubsurface)
# lateral flow in subsurface and upward seepage from subsurfacestore
# typically switched off and never tested
##self.d_exchangevariables.upwardSeepageFlux=self.d_subsurfaceWaterOneLayer.lateralFlow()
#self.checkBudgets(self.currentSampleNumber(), self.currentTimeStep())
#self.printMemberVariables()
####
# geomorpology
####
if cfg.changeGeomorphology and (self.currentTimeStep() % 52 == 0):
# bedrock weathering
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
bedrockWeatheringFlux=self.d_bedrockweathering.weatheringRate(regolithThickness)
###LDD, bedrock###
self.d_regolithdemandbedrock.updateWithBedrockWeathering(bedrockWeatheringFlux)
# creep
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
newRegolithThickness,outflow,flowOverBoundaries,correctedFactor,amountX,amountY,inflowX,inflowY= \
self.d_creep.diffuse(regolithThickness,dem,1)
self.creepDeposition=newRegolithThickness-regolithThickness
###LDD, surface###
self.d_regolithdemandbedrock.setNewRegolith(newRegolithThickness)
### adjust regolith for random jumps TEST TEST
#print 'testje zoek op testje'
#if self.currentTimeStep() == 1000:
# regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
# update bedrock with baselevel change
baselevel=self.d_baselevel.getBaselevel(self.currentTimeStep())
###LDD, surface, bedrock###
self.d_regolithdemandbedrock.setBaselevel(baselevel)
# update subsurface store with new regolith thickness
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
amountOfMoistureThickNetAdded=self.d_subsurfaceWaterOneLayer.updateRegolithThickness(regolithThickness)
# no lateral flow, so bedrock does not need to be updated
# self.d_subsurfaceWaterOneLayer=updateBedrock(self,bedRockLdd,demOfBedrock)
# update soil wash and runoff with new surface properties
self.d_soilwashMMF.setSurfaceProperties(surfaceLdd,dem)
self.d_runoffAccuthreshold.setSurfaceProperties(surfaceLdd)
self.reportComponentsDynamic()
#self.printComponentsDynamic()
calculateStats = (self.currentTimeStep()% cfg.intervalForStatsCalculated ) == 0
######################
# some extra outputs #
######################
if calculateStats:
if cfg.calculateStatsForZones:
# growth part
meanVariable=areaaverage(self.d_biomassModifiedMay.growthPart,self.zoneMap)
generalfunctions.reportLocationsAsNumpyArray( \
self.aLocation,meanVariable,'gpA',self.currentSampleNumber(),self.currentTimeStep())
# grazing part
meanVariable=0.0-areaaverage(spatial(self.d_biomassModifiedMay.grazing),self.zoneMap)
generalfunctions.reportLocationsAsNumpyArray( \
self.aLocation,meanVariable,'grA',self.currentSampleNumber(),self.currentTimeStep())
if cfg.calculateStatsAverageOverMap:
meanVariable=areaaverage(self.d_biomassModifiedMay.biomass,self.areaForAverage)
generalfunctions.reportLocationsAsNumpyArray( \
self.oneLocation,meanVariable,'bioA',self.currentSampleNumber(),self.currentTimeStep())
meanVariable=areaaverage(self.d_regolithdemandbedrock.regolithThickness,self.areaForAverage)
generalfunctions.reportLocationsAsNumpyArray( \
self.oneLocation,meanVariable,'regA',self.currentSampleNumber(),self.currentTimeStep())
if self.currentTimeStep() == cfg.numberOfTimeSteps:
name=generateNameS('grazing', self.currentSampleNumber())
numpy.save(name,self.grazingPressureArray)
if cfg.reportAdHocTimeseries:
meanVariable=areaaverage(self.d_biomassModifiedMay.biomass,self.areaForAverage)
self.biomassTss.sample(meanVariable)
meanVariable=areaaverage(self.d_regolithdemandbedrock.regolithThickness,self.areaForAverage)
self.soilDepthTss.sample(meanVariable)
self.soilDepthJumpTss.sample(self.soilDepthJump)
self.biomassJumpTss.sample(self.biomassJump)
self.soilDepthJump = boolean(0)
self.biomassJump = boolean(0)
def postmcloop(self):
import generalfunctions
if cfg.calculateStatsForZones:
names=['grA', 'gpA']
for name in names:
aVariable = generalfunctions.openSamplesAndTimestepsAsNumpyArraysAsNumpyArray( \
name,range(1,cfg.nrOfSamples+1),timeStepsWithStatsCalculated)
numpy.save(name,aVariable)
if cfg.calculateStatsAverageOverMap:
names=['bioA', 'regA']
for name in names:
aVariable = generalfunctions.openSamplesAndTimestepsAsNumpyArraysAsNumpyArray( \
name,range(1,cfg.nrOfSamples+1),timeStepsWithStatsCalculated)
numpy.save(name,aVariable)
def createInstancesPremcloop(self):
pass
def createInstancesInitial(self):
import generalfunctions
timeStepsToReportAll = range(cfg.reportInterval,cfg.numberOfTimeSteps + 1,cfg.reportInterval)
#timeStepsToReportAll = range(100,cfg.numberOfTimeSteps + 1,100)
timeStepsToReportSome = range(3000,cfg.numberOfTimeSteps + 1,100)
# class for exchange variables in initial and dynamic
# introduced to make filtering possible
self.d_exchangevariables=exchangevariables_weekly.ExchangeVariables( \
timeStepsToReportSome, \
cfg.exchange_report_rasters
)
# base level
#deterministicDem=(ycoordinate(1)*0.4)
deterministicDem=scalar('inputs_weekly/demini.map')
#dem=deterministicDem+uniform(1)/2
dem=deterministicDem
baselevelRise=-0.0001
self.d_baselevel=baselevel.Baselevel( \
generalfunctions.bottom(self.clone), \
deterministicDem, \
baselevelRise, \
self.timeStepDuration/(365.0*24.0), \
timeStepsToReportAll, \
cfg.baselevel_report_rasters)
weatheringRateBareBedrock=0.0005
weatheringExponentParameter=4.0
self.d_bedrockweathering=bedrockweathering.BedrockWeathering( \
weatheringRateBareBedrock, \
weatheringExponentParameter, \
timeStepsToReportAll,\
cfg.bedrockweathering_report_rasters)
steadyStateSoilDepth=self.d_bedrockweathering.steadyStateSoilDepth(0-baselevelRise)
#self.report(steadyStateSoilDepth,'sssd')
# regolith
regolithThickness=spatial(steadyStateSoilDepth)
self.timeStepDurationRegolithInYears=1.0
self.d_regolithdemandbedrock=regolith.RegolithDemAndBedrock(
dem, \
regolithThickness, \
self.timeStepDurationRegolithInYears, \
timeStepsToReportAll, \
cfg.regolith_report_rasters)
regolithThickness,demOfBedrock,dem,bedrockLdd,surfaceLdd=self.d_regolithdemandbedrock.getRegolithProperties()
report(regolithThickness,'regIni.map')
###########
# biomass #
###########
initialBiomass=2.0
waterUseEfficiency=5.0 # same as in paper, table A2, w
maintenanceRate=0.5/(365.0*24.0) # same as in paper, table A2, m
gamma=0.004 # runoff effect on vegetation, this is represented by q in the supplement
# not sure this is the same value
alpha = 0.4 # grazing, it seems this is 0.5 in the appendix, table A2, but the simple
# model uses 0.4 so we may want to keep it at 0.4
dispersion = 0.01/(365.0*24)
sdOfNoise = 0.000000000001
LAIPerBiomass = 2.5 # same as in paper, table A2, labda
self.d_biomassModifiedMay = biomassmodifiedmay.BiomassModifiedMay( \
initialBiomass, \
waterUseEfficiency, \
maintenanceRate, \
gamma, \
alpha, \
dispersion, \
sdOfNoise, \
LAIPerBiomass, \
self.timeStepDuration, \
timeStepsToReportAll, \
cfg.biomassmodifiedmay_report_rasters)
#################
# precipitation #
#################
# scenario: original
probabilityOfARainstorm=0.4
durationOfRainstorm=cfg.theDurationOfRainstorm
expectedRainfallIntensity=0.002
gammaShapeParameter=100
# scenario: higher intensity
#probabilityOfARainstorm=0.4*0.75
#durationOfRainstorm=cfg.theDurationOfRainstorm
#expectedRainfallIntensity=0.002/0.75
#gammaShapeParameter=100
# scenario: much higher intensity
#probabilityOfARainstorm=0.4*0.25
#durationOfRainstorm=cfg.theDurationOfRainstorm
#expectedRainfallIntensity=0.002/0.25
#gammaShapeParameter=100
# scenario: less rainstorms, longer duration
#probabilityOfARainstorm=0.4*0.50
#durationOfRainstorm=cfg.theDurationOfRainstorm/0.50
#expectedRainfallIntensity=0.002
#gammaShapeParameter=100
# scenario: shorter rainstorm
#probabilityOfARainstorm=0.4
#durationOfRainstorm=cfg.theDurationOfRainstorm/2.0
#expectedRainfallIntensity=0.002*2.0
#gammaShapeParameter=100
# scenario: more rainstorms (and also more rain in total)
#probabilityOfARainstorm=0.999
#durationOfRainstorm=cfg.theDurationOfRainstorm
#expectedRainfallIntensity=0.002
#gammaShapeParameter=100
# scenario: all more
#probabilityOfARainstorm=0.4
#durationOfRainstorm=cfg.theDurationOfRainstorm*2.0
#expectedRainfallIntensity=0.004
#gammaShapeParameter=100
self.d_rainfalleventsfromgammadistribution= \
rainfalleventsfromgammadistribution.RainfallEventsFromGammaDistribution( \
probabilityOfARainstorm, \
durationOfRainstorm, \
expectedRainfallIntensity, \
gammaShapeParameter, \
timeStepsToReportAll,
cfg.rainfalleventsfromgammadistribution_report_rasters)
# interception
initialLeafAreaIndex=initialBiomass*LAIPerBiomass
initialInterceptionStore=scalar(0.000001)
gapFraction,maximumInterceptionStore=calculateGapFractionAndMaxIntStoreFromLAI(initialLeafAreaIndex)
self.d_interceptionuptomaxstore=interceptionuptomaxstore.InterceptionUpToMaxStore( \
spatial(ldd(5)), \
initialInterceptionStore, \
maximumInterceptionStore, \
gapFraction, \
cfg.calculateUpstreamTotals, \
durationOfRainstorm,
timeStepsToReportAll,
cfg.interception_report_rasters)
# surface store
initialSurfaceStore=scalar(0.0)
maxSurfaceStore=scalar(0.0001)
self.d_surfaceStore=surfacestore.SurfaceStore( \
initialSurfaceStore, \
maxSurfaceStore, \
durationOfRainstorm,
timeStepsToReportAll,
cfg.surfacestore_report_rasters)
# infiltration
bareSoilSaturatedConductivityFlux=scalar(0.0001)
#maxSaturatedConductivityFluxFromVegetation=scalar(0.01)
maxSaturatedConductivityFluxFromVegetation=scalar(0.1)
biomassHalfSaturation=scalar(1.0)
ksat=bareSoilSaturatedConductivityFlux
self.d_infiltrationonlyksat=infiltrationonlyksat.InfiltrationOnlyKsat( \
ksat, \
bareSoilSaturatedConductivityFlux, \
maxSaturatedConductivityFluxFromVegetation, \
biomassHalfSaturation, \
durationOfRainstorm, \
timeStepsToReportAll, \
cfg.infiltration_report_rasters)
# subsurface water
# loam values from Niko Wanders, see mac disk articles/crittransGeom table
#initialSoilMoistureFraction=scalar(0.03)
initialSoilMoistureFraction=scalar(0.43)
soilPorosityFraction= scalar(0.43)
fieldCapacityFraction=scalar(0.22)
limitingPointFraction=scalar(0.05)
wiltingPointFraction= scalar(0.019)
saturatedConductivityMetrePerDay=generalfunctions.mapuniformBounds( \
2,8,scalar(12.5),cfg.createRealizations)
self.d_subsurfaceWaterOneLayer=subsurfacewateronelayer.SubsurfaceWaterOneLayer(
bedrockLdd,
demOfBedrock,
regolithThickness,
initialSoilMoistureFraction,
soilPorosityFraction,
wiltingPointFraction,
fieldCapacityFraction,
limitingPointFraction,
saturatedConductivityMetrePerDay,
cfg.calculateUpstreamTotals,
self.timeStepDurationHours,
timeStepsToReportAll,
cfg.subsurface_report_rasters)
# evapotranspiration
beta=1.0
maximumEvapotranspirationFlux=0.8/(365.0*24.0)
self.d_evapotranspirationSimple=evapotranspirationsimple.EvapotranspirationSimple( \
self.timeStepDuration, \
beta, \
maximumEvapotranspirationFlux, \
timeStepsToReportAll, \
cfg.evapotranspirationsimple_report_rasters) \
# runoff
self.d_runoffAccuthreshold=runoffaccuthreshold.RunoffAccuthreshold(
surfaceLdd,
durationOfRainstorm,
timeStepsToReportAll,
cfg.runoff_report_rasters)
# soilwash
plantHeightMetres=5.0
stoneCoverFraction=0.1
vegetationCoverOfSoilFraction=0.1
manningsN=0.03 # 'original'
# standard erosion scenario
detachabilityOfSoilRaindrops=1.6 # 'original' (used for all scenarios)
detachabilityOfSoilRunoff=6.4 #'original'
## more erosion scenario
#detachabilityOfSoilRaindrops=16
#detachabilityOfSoilRunoff=64
self.d_soilwashMMF=soilwashMMF.SoilWashMMF( \
surfaceLdd,
dem,
durationOfRainstorm,
plantHeightMetres,
detachabilityOfSoilRaindrops,
stoneCoverFraction,
detachabilityOfSoilRunoff,
vegetationCoverOfSoilFraction,
manningsN,
soilPorosityFraction,
timeStepsToReportAll,
cfg.soilwashMMF_report_rasters)
# creep
diffusion=0.01
self.d_creep=creep.Creep( \
dem, \
self.timeStepDurationRegolithInYears, \
diffusion, \
timeStepsToReportAll, \
cfg.creep_report_rasters)
def reportComponentsDynamic(self):
components =[ \
self.d_exchangevariables, \
self.d_evapotranspirationSimple, \
self.d_regolithdemandbedrock, \
self.d_bedrockweathering,
self.d_baselevel, \
self.d_rainfalleventsfromgammadistribution , \
self.d_interceptionuptomaxstore, \
self.d_surfaceStore, \
self.d_infiltrationonlyksat, \
self.d_runoffAccuthreshold, \
self.d_subsurfaceWaterOneLayer, \
self.d_soilwashMMF, \
self.d_creep,
self.d_biomassModifiedMay
]
for component in components:
component.reportAsMaps(self.currentSampleNumber(), self.currentTimeStep())
def printMemberVariables(self):
import generalfunctions
components =[ \
self.d_exchangevariables, \
self.d_interceptionuptomaxstore, \
self.d_surfaceStore, \
self.d_infiltrationonlyksat, \
self.d_runoffAccuthreshold, \
self.d_subsurfaceWaterOneLayer
]
for component in components:
generalfunctions.printMemberVariables(component)
def printComponentsDynamic(self):
self.d_dateTimePCRasterPython.printit()
def initializeTime(self,startTimeYear, startTimeMonth, startTimeDay, timeStepDurationHours):
startTime=datetime.datetime(year=startTimeYear, month=startTimeMonth, day=startTimeDay)
self.timeStepDurationHours = timeStepDurationHours
self.timeStepDatetimeFormat=datetime.timedelta(hours=self.timeStepDurationHours)
self.d_dateTimePCRasterPython=datetimePCRasterPython.DatetimePCRasterPython \
(startTime, self.timeStepDatetimeFormat)
def checkBudgets(self,currentSampleNumber,currentTimeStep):
increaseInPrecipitationStore=0.0-self.d_exchangevariables.cumulativePrecipitation
report(increaseInPrecipitationStore,generateNameST('incP', currentSampleNumber, currentTimeStep))
increaseInInterceptionStore=self.d_interceptionuptomaxstore.budgetCheck(currentSampleNumber, currentTimeStep)
report(increaseInInterceptionStore,generateNameST('incI', currentSampleNumber, currentTimeStep))
increaseInSurfaceStore=self.d_surfaceStore.budgetCheck(currentSampleNumber, currentTimeStep)
report(increaseInSurfaceStore,generateNameST('incS', currentSampleNumber, currentTimeStep))
increaseInSurfaceStoreQM=catchmenttotal(increaseInSurfaceStore,self.ldd)*cellarea()
report(increaseInSurfaceStoreQM,generateNameST('testb', currentSampleNumber, currentTimeStep))
# let op: infiltration store is directly passed to subsurface store, thus is not a real store
increaseInInfiltrationStore=self.d_infiltrationonlyksat.budgetCheck(currentSampleNumber, currentTimeStep)
increaseInSubSurfaceWaterStore,lateralFlowInSubsurfaceStore,abstractionFromSubSurfaceWaterStore= \
self.d_subsurfaceWaterOneLayer.budgetCheck(currentSampleNumber , currentTimeStep)
increaseInSubSurfaceStoreQM=catchmenttotal(increaseInSubSurfaceWaterStore,self.ldd)*cellarea()
increaseInRunoffStoreCubicMetresInUpstreamArea=self.d_runoffAccuthreshold.budgetCheck()
totalIncreaseInStoresCubicMetresInUpstreamArea=0.0
stores=[increaseInPrecipitationStore, increaseInInterceptionStore, increaseInSurfaceStore, increaseInSubSurfaceWaterStore]
for store in stores:
increaseInStoreCubicMetresInUpstreamArea=catchmenttotal(store,self.ldd)*cellarea()
totalIncreaseInStoresCubicMetresInUpstreamArea=totalIncreaseInStoresCubicMetresInUpstreamArea+ \
increaseInStoreCubicMetresInUpstreamArea
report(totalIncreaseInStoresCubicMetresInUpstreamArea,generateNameST('inSt',currentSampleNumber,currentTimeStep))
report(increaseInRunoffStoreCubicMetresInUpstreamArea ,generateNameST('inRu',currentSampleNumber,currentTimeStep))
report(catchmenttotal(self.d_exchangevariables.upwardSeepageFlux,self.ldd)*cellarea(),generateNameST('inSe',currentSampleNumber,currentTimeStep))
# total budget is total increase in stores plus the upward seepage flux for each ts that is passed to the next
# timestep and thus not taken into account in the current timestep budgets
budget=totalIncreaseInStoresCubicMetresInUpstreamArea+increaseInRunoffStoreCubicMetresInUpstreamArea + \
lateralFlowInSubsurfaceStore*cellarea() + catchmenttotal(abstractionFromSubSurfaceWaterStore,self.ldd)*cellarea() + \
catchmenttotal(self.d_exchangevariables.upwardSeepageFlux,self.ldd)*cellarea()
report(budget,generateNameST('B-tot', currentSampleNumber, currentTimeStep))
budgetRel=budget/increaseInRunoffStoreCubicMetresInUpstreamArea
report(budgetRel,generateNameST('B-rel', currentSampleNumber, currentTimeStep))
myModel = CatchmentModel()
dynamicModel = DynamicFramework(myModel, cfg.numberOfTimeSteps)
mcModel = MonteCarloFramework(dynamicModel, cfg.nrOfSamples)
mcModel.setForkSamples(True,10)
mcModel.run()