-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTest_ANN_incompact3d.m
47 lines (40 loc) · 1.65 KB
/
Test_ANN_incompact3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
clc
clear all
close all
noUnits=[172 100 10 3]; % number of units for each layer including BAIS unit exept in the output layer which has no BAIS
noTrainingPoints=3300;
jump=1
noTestPoints=500;
learningRate=0.5;
scal=1.0;
load 'DATA_38500_NZ19';
% load 'DATA_38500_NZ19'
%%%% -------------- Normalize data ------------
% data=data./max(data);
% %%%------------------------------------------------
% inputTrain=[ones(noTrainingPoints,1),inputDataStep_rand(1:noTrainingPoints,:)];
% targetTrain=targetDataStep_rand(1:noTrainingPoints,:);
%
% inputTest=[ones(noTestPoints,1),inputDataStep_rand(noTrainingPoints+1:noTrainingPoints+noTestPoints,:)];
% targetTest=targetDataStep_rand(noTrainingPoints+1:noTrainingPoints+noTestPoints,:);
%%%------------------------------------------------
inputTrain=[ones(noTrainingPoints,1),inputData(1:noTrainingPoints,:)];
targetTrain=targetData(1:noTrainingPoints,:);
inputTest=[ones(noTestPoints,1),inputData(noTrainingPoints+1:noTrainingPoints+noTestPoints,:)];
targetTest=targetData(noTrainingPoints+1:noTrainingPoints+noTestPoints,:);
ann=NeuralNetworks(length(noUnits),noUnits,scal,'tanh');
load ('WEIGHTS') %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ann.theta=weights; %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ann.train(inputTrain(1:jump:end,:),targetTrain(1:jump:end,:),2,learningRate)
%%
% weights=ann.theta;
% save ('WEIGHTS','weights')
ann.test(inputTrain,targetTrain,'noPlot')
costFunTest=ann.costFunTest
figure (3)
plot (targetTrain(:,2),'r')
hold on
plot(ann.predictedOutput(2,:),'black')
% E=targetTest-ann.predictedOutput';
%
% mean (E.^2);