Skip to content

Latest commit

 

History

History

BERT

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

MXNet BERT-Base 测评

概述 Overview

本测试基于 gluon-nlp 仓库中提供的 MXNet框架的 BERT-base 实现,进行了1机1卡、1机8卡、2机16卡、4机32卡的结果复现及速度评测,得到吞吐率及加速比,评判框架在分布式多机训练情况下的横向拓展能力。

目前,该测试覆盖了FP32 精度、FP16混合精度,后续将持续维护,增加更多方式的测评。

环境 Environment

系统

  • 硬件

    • GPU:8x Tesla V100-SXM2-16GB
  • 软件

    • 驱动:NVIDIA 440.33.01

    • 系统: Ubuntu 16.04

    • CUDA:10.2

    • cuDNN:7.6.5

    • NCCL:2.7.3

    • OpenMPI 4.0.0

    • Horovod 0.19.5

    • Python:3.7.7

  • 框架

    • MXNet 1.6.0
  • Feature support matrix

Feature BERT-Base MXNet
Horovod/MPI Multi-GPU Yes
Horovod/MPI Multi-Node Yes
Automatic mixed precision (AMP) Yes

快速开始 Quick Start

1. 前期准备

  • 数据集

    数据集制作参考gluon-nlp仓库提供的create_pretraining_data.py脚本

  • SSH 免密

    单机测试下无需配置,但测试2机、4机等多机情况下,则需要配置节点间的ssh免密登录,保证MXNet 的 mpi 分布式脚本运行时可以在单机上与其他节点互联。

  • 环境安装

# 安装mxnet
python3 -m pip install gluonnlp==0.10.0 mxnet-cu102mkl==1.6.0.post0 -i https://mirror.baidu.com/pypi/simple
# 安装horovod(安装前,确保环境中已有nccl、openmpi)
HOROVOD_WITH_MXNET=1  HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL python3 -m pip install --no-cache-dir horovod==0.19.5

2. 额外准备

  • 下载gluon-nlp仓库源码

    git clone https://github.com/dmlc/gluon-nlp.git 
    git checkout 7b7bf60259e28b3bf1f4d70569a7e5c18e2f4b3e

    注: 切换到这个分支才能跑,v0.9x分支不能跑,跑起来会卡住。(现象是GPU内存和计算都有被占用,同时可以看到有一个CPU线程被100%占用,但是发生了死锁)

  • 注释参数

    • 注释掉 scripts/bert/data/pretrain.py 的round_to参数。

      原因是round_to参数会报错:

      <stderr>:TypeError: __init__() got an unexpected keyword argument 'round_to'
    • 注释掉 /scripts/bert/run_pretraining.py 里跟eval_dir相关的逻辑:

      line:95 data_eval允许为空。

      parser.add_argument('--data_eval', type=str, required=False,
      

      line:443 不进行eval。

      #    if data_eval:
      #        # eval data is always based on a fixed npz file.
      #        shuffle = False
      #        dataset_eval = get_pretrain_data_npz(data_eval, batch_size_eval,
      #                                             len(ctxs), shuffle, 1, vocab)
      #        evaluate(dataset_eval, model, ctxs, args.log_interval, args.dtype)

      原因是加上eval会卡住很久。

    • 训练200个iterations就结束:

      /scripts/bert/run_pretraining.py 中添加结束标记,用于在train step达到后就终止训练

      line:290

                   if step_num >= num_train_steps:
      +                end_of_batch = True
                       break

3. 运行测试

本次测试集群中有 4 台节点:

  • NODE1=10.11.0.2
  • NODE2=10.11.0.3
  • NODE3=10.11.0.4
  • NODE4=10.11.0.5

每个节点有 8 张 V100 显卡, 每张显卡显存 16 G。

测试

在容器内下载本仓库源码:

git clone https://github.com/Oneflow-Inc/DLPerf.git

将本仓库 DLPerf/MXNet/BERT/ 路径源码放至 gluon-nlp/scripts/bert/ 下,执行脚本

bash run_test.sh

针对1机1卡、1机8卡、2机16卡、4机32卡, batch_size_per_device = 32 进行测试,并将 log 信息保存在当前目录的logs/mxnet/bert/bz32对应分布式配置路径中。

默认对batch size=32进行测试 ,您也可以指定其他大小的batch size,如:

# batch size = 48
bash run_test.sh 48

# batch size = 64
bash run_test.sh 64

GPU显存占用

  • batch size=32: 10317MiB / 16160MiB

  • batch size=48: 14021MiB / 16160MiB

  • batch size=64: 14959MiB / 16160MiB

  • batch size=96: OOM

4. 数据处理

测试进行了多组训练(本测试中取 7 次),每次训练只进行200 iter(1个epoch),计算训练速度时去掉前 100 iter,只取后 100 iter 的数据,以降低抖动。最后将 7 次训练的速度取中位数得到最终速度,并最终以此数据计算加速比。

运行,即可得到针对不同配置测试结果 log 数据处理的结果:

python extract_mxnet_logs.py --log_dir=./logs/mxnet/bert/bz32 --batch_size_per_device=32

结果打印如下

./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_4.log {4: 3698.92}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_7.log {4: 3698.92, 7: 3673.42}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_6.log {4: 3698.92, 7: 3673.42, 6: 3658.23}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_3.log {4: 3698.92, 7: 3673.42, 6: 3658.23, 3: 3666.21}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_5.log {4: 3698.92, 7: 3673.42, 6: 3658.23, 3: 3666.21, 5: 3671.45}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_2.log {4: 3698.92, 7: 3673.42, 6: 3658.23, 3: 3666.21, 5: 3671.45, 2: 3668.26}
./logs/mxnet/bert/bz32/4n8g/bert_b32_fp32_1.log {4: 3698.92, 7: 3673.42, 6: 3658.23, 3: 3666.21, 5: 3671.45, 2: 3668.26, 1: 3693.44}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_4.log {4: 1047.02}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_7.log {4: 1047.02, 7: 1050.76}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_6.log {4: 1047.02, 7: 1050.76, 6: 1075.79}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_3.log {4: 1047.02, 7: 1050.76, 6: 1075.79, 3: 1036.56}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_5.log {4: 1047.02, 7: 1050.76, 6: 1075.79, 3: 1036.56, 5: 1058.6}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_2.log {4: 1047.02, 7: 1050.76, 6: 1075.79, 3: 1036.56, 5: 1058.6, 2: 1075.74}
./logs/mxnet/bert/bz32/1n8g/bert_b32_fp32_1.log {4: 1047.02, 7: 1050.76, 6: 1075.79, 3: 1036.56, 5: 1058.6, 2: 1075.74, 1: 1061.91}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_4.log {4: 538.91}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_7.log {4: 538.91, 7: 549.75}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_6.log {4: 538.91, 7: 549.75, 6: 536.96}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_3.log {4: 538.91, 7: 549.75, 6: 536.96, 3: 549.03}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_5.log {4: 538.91, 7: 549.75, 6: 536.96, 3: 549.03, 5: 533.45}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_2.log {4: 538.91, 7: 549.75, 6: 536.96, 3: 549.03, 5: 533.45, 2: 538.5}
./logs/mxnet/bert/bz32/1n4g/bert_b32_fp32_1.log {4: 538.91, 7: 549.75, 6: 536.96, 3: 549.03, 5: 533.45, 2: 538.5, 1: 537.05}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_4.log {4: 149.88}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_7.log {4: 149.88, 7: 150.9}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_6.log {4: 149.88, 7: 150.9, 6: 150.04}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_3.log {4: 149.88, 7: 150.9, 6: 150.04, 3: 149.53}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_5.log {4: 149.88, 7: 150.9, 6: 150.04, 3: 149.53, 5: 150.12}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_2.log {4: 149.88, 7: 150.9, 6: 150.04, 3: 149.53, 5: 150.12, 2: 150.14}
./logs/mxnet/bert/bz32/1n1g/bert_b32_fp32_1.log {4: 149.88, 7: 150.9, 6: 150.04, 3: 149.53, 5: 150.12, 2: 150.14, 1: 150.11}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_4.log {4: 270.28}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_7.log {4: 270.28, 7: 268.86}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_6.log {4: 270.28, 7: 268.86, 6: 272.09}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_3.log {4: 270.28, 7: 268.86, 6: 272.09, 3: 273.02}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_5.log {4: 270.28, 7: 268.86, 6: 272.09, 3: 273.02, 5: 269.99}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_2.log {4: 270.28, 7: 268.86, 6: 272.09, 3: 273.02, 5: 269.99, 2: 271.05}
./logs/mxnet/bert/bz32/1n2g/bert_b32_fp32_1.log {4: 270.28, 7: 268.86, 6: 272.09, 3: 273.02, 5: 269.99, 2: 271.05, 1: 267.29}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_4.log {4: 1844.1}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_7.log {4: 1844.1, 7: 1841.41}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_6.log {4: 1844.1, 7: 1841.41, 6: 1835.11}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_3.log {4: 1844.1, 7: 1841.41, 6: 1835.11, 3: 1854.88}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_5.log {4: 1844.1, 7: 1841.41, 6: 1835.11, 3: 1854.88, 5: 1847.2}
./logs/mxnet/bert/bz32/2n8g/bert_b32_fp32_2.log {4: 1844.1, 7: 1841.41, 6: 1835.11, 3: 1854.88, 5: 1847.2, 2: 1848.74}
{'bert': {'1n1g': {'average_speed': 150.1,
                   'batch_size_per_device': 32,
                   'median_speed': 150.11,
                   'speedup': 1.0},
          '1n2g': {'average_speed': 270.37,
                   'batch_size_per_device': 32,
                   'median_speed': 270.28,
                   'speedup': 1.8},
          '1n4g': {'average_speed': 540.52,
                   'batch_size_per_device': 32,
                   'median_speed': 538.5,
                   'speedup': 3.59},
          '1n8g': {'average_speed': 1058.05,
                   'batch_size_per_device': 32,
                   'median_speed': 1058.6,
                   'speedup': 7.05},
          '2n8g': {'average_speed': 1845.24,
                   'batch_size_per_device': 32,
                   'median_speed': 1845.65,
                   'speedup': 12.3},
          '4n8g': {'average_speed': 3675.7,
                   'batch_size_per_device': 32,
                   'median_speed': 3671.45,
                   'speedup': 24.46}}}
Saving result to ./result/bz32_result.json

5. 计算规则

5.1 测速脚本

  • extract_mxnet_logs.py 根据官方在log中打印的速度,在200个iter中,排除前100iter,取后100个iter的速度做平均;

5.2 均值速度和中值速度

  • average_speed均值速度

  • median_speed中值速度

    每个batch size进行7次训练测试,记为一组,每一组取average_speed为均值速度,median_speed为中值速度

5.3 加速比以中值速度计算

脚本和表格中的 加速比 是以单机单卡下的中值速度为基准进行计算的。例如:

单机单卡情况下速度为200(samples/s),单机2卡速度为400,单机4卡速度为700,则加速比分别为:1.0、2.0、3.5

性能结果 Performance

该小节提供针对 MXNet 框架的BERT-base 模型单机测试的性能结果和完整 log 日志。

BERT-base FP32

Batch size = 64 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 156.76 1
1 2 295.42 1.88
1 4 587.71 3.75
1 8 1153.08 7.36
2 16 2172.62 13.86
4 32 4340.89 27.69

Batch size = 48 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 153.75 1
1 2 287.77 1.87
1 4 572.64 3.72
1 8 1127.41 7.33
2 16 2067.72 13.45
4 32 4105.29 26.7

Batch size = 32 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 150.11 1
1 2 270.28 1.80
1 4 538.5 3.59
1 8 1058.6 7.05
2 16 1845.65 12.30
4 32 3671.45 24.46

BERT-base FP16

Batch size = 64 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 473.76 1
1 2 811.6 1.71
1 4 1623.56 3.43
1 8 3107.1 6.56
2 16 5723.26 12.08
4 32 11269.14 23.79

Batch size = 96 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 516.54 1
1 2 925.52 1.79
1 4 1837.08 3.56
1 8 3579.0 6.93
2 16 6684.57 12.94
4 32 13376.76 25.9

Batch size = 128 & W/O xla & W/O clip

node_num gpu_num samples/s speedup
1 1 544.31 1
1 2 1000.15 1.84
1 4 1970.59 3.62
1 8 3825.21 7.03
2 16 7327.5 13.46
4 32 14822.31 27.33

W/O xla,即without xla,表明测试过程未使用xla

W/O clip,即without clip,表明测试过程未使用gradient clip

详细 Log 信息可下载:

说明

BERT论文的google代码实现中,用到了梯度剪裁(Gradient Clipping),通常引入Gradient Clipping是为了处理gradient explosion或者gradients vanishing的问题,防止由于迭代过程中梯度更新过于迅速导致的loss divergence,简单来说,就是将权重更新限制在一个合适的范围内。

1.Gradient Clipping通常分为以下几种实现方式:

  • clip by value

  • clip by norm

  • clip by global norm

2.简单来说clip by value即对梯度矩阵进行就地剪裁,超过或小于设定的阈值,就会被替换;clip by norm和clip by value类似,不过需要给梯度矩阵计算出L2-norm值后再和clip_norm比较和截取;而clip by global norm则需要先计算出全局梯度的global_norm,再以global_norm为基准进行比较和截取。所以实现clip by global norm会对速度带来一些影响(参考:tensorflow-clip_by_global_norm)。

3.在BERT的google代码实现中采用的是clip by global norm的方式(见:Line 74),在oneflow的bert实现中,也采用了和原论文一致的实现方式clip by global norm,评测oneflow时,我们对添加clip和未添加clip的情况分别做了测试,测试结果见BERT base result on 4 nodes with 8x V100 16G GPUs each 。而在gluon-mxnet的bert实现中,是没有使用clip的