-
Notifications
You must be signed in to change notification settings - Fork 31
/
alexnet_model.py
166 lines (134 loc) · 4.65 KB
/
alexnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow.compatible.single_client as flow
def _get_kernel_initializer(data_format="NCHW"):
return flow.variance_scaling_initializer(
distribution="random_normal", data_format=data_format
)
def _get_regularizer():
return flow.regularizers.l2(0.00005)
def _get_bias_initializer():
return flow.zeros_initializer()
def conv2d_layer(
name,
input,
filters,
kernel_size=3,
strides=1,
padding="SAME",
data_format="NCHW",
dilation_rate=1,
activation="Relu",
use_bias=True,
bias_initializer=_get_bias_initializer(),
weight_regularizer=_get_regularizer(),
bias_regularizer=_get_regularizer(),
):
if isinstance(kernel_size, int):
kernel_size_1 = kernel_size
kernel_size_2 = kernel_size
if isinstance(kernel_size, list):
kernel_size_1 = kernel_size[0]
kernel_size_2 = kernel_size[1]
weight_initializer = _get_kernel_initializer(data_format)
weight_shape = (
(filters, input.shape[1], kernel_size_1, kernel_size_2)
if data_format == "NCHW"
else (filters, kernel_size_1, kernel_size_2, input.shape[3])
)
weight = flow.get_variable(
name + "-weight",
shape=weight_shape,
dtype=input.dtype,
initializer=weight_initializer,
regularizer=weight_regularizer,
)
output = flow.nn.conv2d(
input, weight, strides, padding, None, data_format, dilation_rate, name=name
)
if use_bias:
bias = flow.get_variable(
name + "-bias",
shape=(filters,),
dtype=input.dtype,
initializer=bias_initializer,
regularizer=bias_regularizer,
)
output = flow.nn.bias_add(output, bias, data_format)
if activation is not None:
if activation == "Relu":
output = flow.nn.relu(output)
else:
raise NotImplementedError
return output
def alexnet(images, args, trainable=True):
data_format = "NHWC" if args.channel_last else "NCHW"
conv1 = conv2d_layer(
"conv1",
images,
filters=64,
kernel_size=11,
strides=4,
padding="VALID",
data_format=data_format,
)
pool1 = flow.nn.avg_pool2d(conv1, 3, 2, "VALID", data_format, name="pool1")
conv2 = conv2d_layer(
"conv2", pool1, filters=192, kernel_size=5, data_format=data_format
)
pool2 = flow.nn.avg_pool2d(conv2, 3, 2, "VALID", data_format, name="pool2")
conv3 = conv2d_layer("conv3", pool2, filters=384, data_format=data_format)
conv4 = conv2d_layer("conv4", conv3, filters=384, data_format=data_format)
conv5 = conv2d_layer("conv5", conv4, filters=256, data_format=data_format)
pool5 = flow.nn.avg_pool2d(conv5, 3, 2, "VALID", data_format, name="pool5")
if len(pool5.shape) > 2:
pool5 = flow.reshape(pool5, shape=(pool5.shape[0], -1))
fc1 = flow.layers.dense(
inputs=pool5,
units=4096,
activation=flow.nn.relu,
use_bias=True,
# kernel_initializer=flow.random_uniform_initializer(),
kernel_initializer=_get_kernel_initializer(),
bias_initializer=_get_bias_initializer(),
kernel_regularizer=_get_regularizer(),
bias_regularizer=_get_regularizer(),
trainable=trainable,
name="fc1",
)
dropout1 = flow.nn.dropout(fc1, rate=0.5)
fc2 = flow.layers.dense(
inputs=dropout1,
units=4096,
activation=flow.nn.relu,
use_bias=True,
kernel_initializer=_get_kernel_initializer(),
bias_initializer=_get_bias_initializer(),
kernel_regularizer=_get_regularizer(),
bias_regularizer=_get_regularizer(),
trainable=trainable,
name="fc2",
)
dropout2 = flow.nn.dropout(fc2, rate=0.5)
fc3 = flow.layers.dense(
inputs=dropout2,
units=1000,
activation=None,
use_bias=False,
kernel_initializer=_get_kernel_initializer(),
kernel_regularizer=_get_regularizer(),
bias_initializer=False,
trainable=trainable,
name="fc3",
)
return fc3