-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathmain.py
100 lines (87 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from __future__ import print_function
from clBeergame import *
from utilities import *
import numpy as np
#from clGeneralParameters import generalParameters
import random
from config import get_config, update_config
import tensorflow as tf
config = None
#def main(config, beerGame):
def main(config):
random.seed(10)
# prepare loggers and directories
prepare_dirs_and_logger(config)
config = update_config(config)
# save the current configuration of the problem in a json file
save_config(config)
# get the address of data
if config.observation_data:
adsr = 'data/demandTr-obs-'
elif config.demandDistribution == 3:
if config.scaled:
adsr = 'data/basket_data/scaled'
else:
adsr = 'data/basket_data'
elif config.demandDistribution == 4:
if config.scaled:
adsr = 'data/forecast_data/scaled'
else:
adsr = 'data/forecast_data'
else:
adsr = 'data/demandTr'
# load demands
# demandTr = np.load('demandTr'+str(config.demandDistribution)+'-'+str(config.demandUp)+'.npy')
if config.demandDistribution == 0:
direc = os.path.realpath(adsr+str(config.demandDistribution)+'-'+str(config.demandUp)+'-'+str(config.maxEpisodesTrain)+'.npy')
if not os.path.exists(direc):
direc = os.path.realpath(adsr+str(config.demandDistribution)+'-'+str(config.demandUp)+'.npy')
elif config.demandDistribution == 1:
direc = os.path.realpath(adsr+str(config.demandDistribution)+'-'+str(int(config.demandMu))+'-'+str(int(config.demandSigma))+'.npy')
elif config.demandDistribution == 2:
direc = os.path.realpath(adsr+str(config.demandDistribution)+'.npy')
elif config.demandDistribution == 3:
direc = os.path.realpath(adsr+'/demandTr-'+str(config.data_id)+'.npy')
elif config.demandDistribution == 4:
direc = os.path.realpath(adsr+'/demandTr-'+str(config.data_id)+'.npy')
demandTr = np.load(direc)
print("loaded training set=", direc)
if config.demandDistribution == 0:
direc = os.path.realpath('data/demandTs'+str(config.demandDistribution)+'-'+str(config.demandUp)+'-'+str(config.maxEpisodesTrain)+'.npy')
if not os.path.exists(direc):
direc = os.path.realpath('data/demandTs'+str(config.demandDistribution)+'-'+str(config.demandUp)+'.npy')
elif config.demandDistribution == 1:
direc = os.path.realpath('data/demandTs'+str(config.demandDistribution)+'-'+str(int(config.demandMu))+'-'+str(int(config.demandSigma))+'.npy')
elif config.demandDistribution == 2:
direc = os.path.realpath('data/demandTs'+str(config.demandDistribution)+'.npy')
elif config.demandDistribution == 3:
direc = os.path.realpath(adsr+'/demandTs-'+str(config.data_id)+'.npy')
direcVl = os.path.realpath(adsr+'/demandVl-'+str(config.data_id)+'.npy')
demandVl = np.load(direcVl)
elif config.demandDistribution == 4:
direc = os.path.realpath(adsr+'/demandTs-'+str(config.data_id)+'.npy')
direcVl = os.path.realpath(adsr+'/demandVl-'+str(config.data_id)+'.npy')
demandVl = np.load(direcVl)
demandTs = np.load(direc)
print("loaded test set=", direc)
# initilize an instance of Beergame
beerGame = clBeerGame(config)
# get the length of the demand.
demand_len = np.shape(demandTr)[0]
# Do Initial tests
beerGame.doTestMid(demandTs[0:config.testRepeatMid])
# train the specified number of games
for i in range(0, config.maxEpisodesTrain):
beerGame.playGame(demandTr[i%demand_len],"train")
# get the test results
if (np.mod(beerGame.curGame,config.testInterval) == 0) and (beerGame.curGame>500):
beerGame.doTestMid(demandTs[0:config.testRepeatMid])
# do the last test on the middle test data set.
beerGame.doTestMid(demandTs[0:config.testRepeatMid])
if config.demandDistribution == 3:
beerGame.doTestMid(demandVl[0:config.testRepeatMid])
if __name__ == '__main__':
# load parameters
config, unparsed = get_config()
# run main
main(config)