forked from carpedm20/BEGAN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
351 lines (273 loc) · 13.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
from __future__ import print_function
import os
import StringIO
import scipy.misc
import numpy as np
from glob import glob
from tqdm import trange
from itertools import chain
from collections import deque
from models import *
from utils import save_image
def next(loader):
return loader.next()[0].data.numpy()
def to_nhwc(image, data_format):
if data_format == 'NCHW':
new_image = nchw_to_nhwc(image)
else:
new_image = image
return new_image
def to_nchw_numpy(image):
if image.shape[3] in [1, 3]:
new_image = image.transpose([0, 3, 1, 2])
else:
new_image = image
return new_image
def norm_img(image, data_format=None):
image = image/127.5 - 1.
if data_format:
image = to_nhwc(image, data_format)
return image
def denorm_img(norm, data_format):
return tf.clip_by_value(to_nhwc((norm + 1)*127.5, data_format), 0, 255)
def slerp(val, low, high):
"""Code from https://github.com/soumith/dcgan.torch/issues/14"""
omega = np.arccos(np.clip(np.dot(low/np.linalg.norm(low), high/np.linalg.norm(high)), -1, 1))
so = np.sin(omega)
if so == 0:
return (1.0-val) * low + val * high # L'Hopital's rule/LERP
return np.sin((1.0-val)*omega) / so * low + np.sin(val*omega) / so * high
class Trainer(object):
def __init__(self, config, data_loader):
self.config = config
self.data_loader = data_loader
self.dataset = config.dataset
self.beta1 = config.beta1
self.beta2 = config.beta2
self.optimizer = config.optimizer
self.batch_size = config.batch_size
self.step = tf.Variable(0, name='step', trainable=False)
self.g_lr = tf.Variable(config.g_lr, name='g_lr')
self.d_lr = tf.Variable(config.d_lr, name='d_lr')
self.g_lr_update = tf.assign(self.g_lr, tf.maximum(self.g_lr * 0.5, config.lr_lower_boundary), name='g_lr_update')
self.d_lr_update = tf.assign(self.d_lr, tf.maximum(self.d_lr * 0.5, config.lr_lower_boundary), name='d_lr_update')
self.gamma = config.gamma
self.lambda_k = config.lambda_k
self.z_num = config.z_num
self.conv_hidden_num = config.conv_hidden_num
self.input_scale_size = config.input_scale_size
self.model_dir = config.model_dir
self.load_path = config.load_path
self.use_gpu = config.use_gpu
self.data_format = config.data_format
_, height, width, self.channel = \
get_conv_shape(self.data_loader, self.data_format)
self.repeat_num = int(np.log2(height)) - 2
self.start_step = 0
self.log_step = config.log_step
self.max_step = config.max_step
self.save_step = config.save_step
self.lr_update_step = config.lr_update_step
self.is_train = config.is_train
self.build_model()
self.saver = tf.train.Saver()
self.summary_writer = tf.summary.FileWriter(self.model_dir)
sv = tf.train.Supervisor(logdir=self.model_dir,
is_chief=True,
saver=self.saver,
summary_op=None,
summary_writer=self.summary_writer,
save_model_secs=300,
global_step=self.step,
ready_for_local_init_op=None)
gpu_options = tf.GPUOptions(allow_growth=True)
sess_config = tf.ConfigProto(allow_soft_placement=True,
gpu_options=gpu_options)
self.sess = sv.prepare_or_wait_for_session(config=sess_config)
if not self.is_train:
# dirty way to bypass graph finilization error
g = tf.get_default_graph()
g._finalized = False
self.build_test_model()
def train(self):
z_fixed = np.random.uniform(-1, 1, size=(self.batch_size, self.z_num))
x_fixed = self.get_image_from_loader()
save_image(x_fixed, '{}/x_fixed.png'.format(self.model_dir))
prev_measure = 1
measure_history = deque([0]*self.lr_update_step, self.lr_update_step)
for step in trange(self.start_step, self.max_step):
fetch_dict = {
"k_update": self.k_update,
"measure": self.measure,
}
if step % self.log_step == 0:
fetch_dict.update({
"summary": self.summary_op,
"g_loss": self.g_loss,
"d_loss": self.d_loss,
"k_t": self.k_t,
})
result = self.sess.run(fetch_dict)
measure = result['measure']
measure_history.append(measure)
if step % self.log_step == 0:
self.summary_writer.add_summary(result['summary'], step)
self.summary_writer.flush()
g_loss = result['g_loss']
d_loss = result['d_loss']
k_t = result['k_t']
print("[{}/{}] Loss_D: {:.6f} Loss_G: {:.6f} measure: {:.4f}, k_t: {:.4f}". \
format(step, self.max_step, d_loss, g_loss, measure, k_t))
if step % (self.log_step * 10) == 0:
x_fake = self.generate(z_fixed, self.model_dir, idx=step)
self.autoencode(x_fixed, self.model_dir, idx=step, x_fake=x_fake)
if step % self.lr_update_step == self.lr_update_step - 1:
self.sess.run([self.g_lr_update, self.d_lr_update])
#cur_measure = np.mean(measure_history)
#if cur_measure > prev_measure * 0.99:
#prev_measure = cur_measure
def build_model(self):
self.x = self.data_loader
x = norm_img(self.x)
self.z = tf.random_uniform(
(tf.shape(x)[0], self.z_num), minval=-1.0, maxval=1.0)
self.k_t = tf.Variable(0., trainable=False, name='k_t')
G, self.G_var = GeneratorCNN(
self.z, self.conv_hidden_num, self.channel,
self.repeat_num, self.data_format, reuse=False)
d_out, self.D_z, self.D_var = DiscriminatorCNN(
tf.concat([G, x], 0), self.channel, self.z_num, self.repeat_num,
self.conv_hidden_num, self.data_format)
AE_G, AE_x = tf.split(d_out, 2)
self.G = denorm_img(G, self.data_format)
self.AE_G, self.AE_x = denorm_img(AE_G, self.data_format), denorm_img(AE_x, self.data_format)
if self.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer
else:
raise Exception("[!] Caution! Paper didn't use {} opimizer other than Adam".format(config.optimizer))
g_optimizer, d_optimizer = optimizer(self.g_lr), optimizer(self.d_lr)
self.d_loss_real = tf.reduce_mean(tf.abs(AE_x - x))
self.d_loss_fake = tf.reduce_mean(tf.abs(AE_G - G))
self.d_loss = self.d_loss_real - self.k_t * self.d_loss_fake
self.g_loss = tf.reduce_mean(tf.abs(AE_G - G))
d_optim = d_optimizer.minimize(self.d_loss, var_list=self.D_var)
g_optim = g_optimizer.minimize(self.g_loss, global_step=self.step, var_list=self.G_var)
self.balance = self.gamma * self.d_loss_real - self.g_loss
self.measure = self.d_loss_real + tf.abs(self.balance)
with tf.control_dependencies([d_optim, g_optim]):
self.k_update = tf.assign(
self.k_t, tf.clip_by_value(self.k_t + self.lambda_k * self.balance, 0, 1))
self.summary_op = tf.summary.merge([
tf.summary.image("G", self.G),
tf.summary.image("AE_G", self.AE_G),
tf.summary.image("AE_x", self.AE_x),
tf.summary.scalar("loss/d_loss", self.d_loss),
tf.summary.scalar("loss/d_loss_real", self.d_loss_real),
tf.summary.scalar("loss/d_loss_fake", self.d_loss_fake),
tf.summary.scalar("loss/g_loss", self.g_loss),
tf.summary.scalar("misc/measure", self.measure),
tf.summary.scalar("misc/k_t", self.k_t),
tf.summary.scalar("misc/d_lr", self.d_lr),
tf.summary.scalar("misc/g_lr", self.g_lr),
tf.summary.scalar("misc/balance", self.balance),
])
def build_test_model(self):
with tf.variable_scope("test") as vs:
# Extra ops for interpolation
z_optimizer = tf.train.AdamOptimizer(0.0001)
self.z_r = tf.get_variable("z_r", [self.batch_size, self.z_num], tf.float32)
self.z_r_update = tf.assign(self.z_r, self.z)
G_z_r, _ = GeneratorCNN(
self.z_r, self.conv_hidden_num, self.channel, self.repeat_num, self.data_format, reuse=True)
with tf.variable_scope("test") as vs:
self.z_r_loss = tf.reduce_mean(tf.abs(self.x - G_z_r))
self.z_r_optim = z_optimizer.minimize(self.z_r_loss, var_list=[self.z_r])
test_variables = tf.contrib.framework.get_variables(vs)
self.sess.run(tf.variables_initializer(test_variables))
def generate(self, inputs, root_path=None, path=None, idx=None, save=True):
x = self.sess.run(self.G, {self.z: inputs})
if path is None and save:
path = os.path.join(root_path, '{}_G.png'.format(idx))
save_image(x, path)
print("[*] Samples saved: {}".format(path))
return x
def autoencode(self, inputs, path, idx=None, x_fake=None):
items = {
'real': inputs,
'fake': x_fake,
}
for key, img in items.items():
if img is None:
continue
if img.shape[3] in [1, 3]:
img = img.transpose([0, 3, 1, 2])
x_path = os.path.join(path, '{}_D_{}.png'.format(idx, key))
x = self.sess.run(self.AE_x, {self.x: img})
save_image(x, x_path)
print("[*] Samples saved: {}".format(x_path))
def encode(self, inputs):
if inputs.shape[3] in [1, 3]:
inputs = inputs.transpose([0, 3, 1, 2])
return self.sess.run(self.D_z, {self.x: inputs})
def decode(self, z):
return self.sess.run(self.AE_x, {self.D_z: z})
def interpolate_G(self, real_batch, step=0, root_path='.', train_epoch=0):
batch_size = len(real_batch)
half_batch_size = int(batch_size/2)
self.sess.run(self.z_r_update)
tf_real_batch = to_nchw_numpy(real_batch)
for i in trange(train_epoch):
z_r_loss, _ = self.sess.run([self.z_r_loss, self.z_r_optim], {self.x: tf_real_batch})
z = self.sess.run(self.z_r)
z1, z2 = z[:half_batch_size], z[half_batch_size:]
real1_batch, real2_batch = real_batch[:half_batch_size], real_batch[half_batch_size:]
generated = []
for idx, ratio in enumerate(np.linspace(0, 1, 10)):
z = np.stack([slerp(ratio, r1, r2) for r1, r2 in zip(z1, z2)])
z_decode = self.generate(z, save=False)
generated.append(z_decode)
generated = np.stack(generated).transpose([1, 0, 2, 3, 4])
for idx, img in enumerate(generated):
save_image(img, os.path.join(root_path, 'test{}_interp_G_{}.png'.format(step, idx)), nrow=10)
all_img_num = np.prod(generated.shape[:2])
batch_generated = np.reshape(generated, [all_img_num] + list(generated.shape[2:]))
save_image(batch_generated, os.path.join(root_path, 'test{}_interp_G.png'.format(step)), nrow=10)
def interpolate_D(self, real1_batch, real2_batch, step=0, root_path="."):
real1_encode = self.encode(real1_batch)
real2_encode = self.encode(real2_batch)
decodes = []
for idx, ratio in enumerate(np.linspace(0, 1, 10)):
z = np.stack([slerp(ratio, r1, r2) for r1, r2 in zip(real1_encode, real2_encode)])
z_decode = self.decode(z)
decodes.append(z_decode)
decodes = np.stack(decodes).transpose([1, 0, 2, 3, 4])
for idx, img in enumerate(decodes):
img = np.concatenate([[real1_batch[idx]], img, [real2_batch[idx]]], 0)
save_image(img, os.path.join(root_path, 'test{}_interp_D_{}.png'.format(step, idx)), nrow=10 + 2)
def test(self):
root_path = "./"#self.model_dir
all_G_z = None
for step in range(3):
real1_batch = self.get_image_from_loader()
real2_batch = self.get_image_from_loader()
save_image(real1_batch, os.path.join(root_path, 'test{}_real1.png'.format(step)))
save_image(real2_batch, os.path.join(root_path, 'test{}_real2.png'.format(step)))
self.autoencode(
real1_batch, self.model_dir, idx=os.path.join(root_path, "test{}_real1".format(step)))
self.autoencode(
real2_batch, self.model_dir, idx=os.path.join(root_path, "test{}_real2".format(step)))
self.interpolate_G(real1_batch, step, root_path)
#self.interpolate_D(real1_batch, real2_batch, step, root_path)
z_fixed = np.random.uniform(-1, 1, size=(self.batch_size, self.z_num))
G_z = self.generate(z_fixed, path=os.path.join(root_path, "test{}_G_z.png".format(step)))
if all_G_z is None:
all_G_z = G_z
else:
all_G_z = np.concatenate([all_G_z, G_z])
save_image(all_G_z, '{}/G_z{}.png'.format(root_path, step))
save_image(all_G_z, '{}/all_G_z.png'.format(root_path), nrow=16)
def get_image_from_loader(self):
x = self.data_loader.eval(session=self.sess)
if self.data_format == 'NCHW':
x = x.transpose([0, 2, 3, 1])
return x