-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
172 lines (145 loc) · 5.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
from typing import Literal
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from model.chatgpt_prompting import generate_sentence
from model.summary_dialogue_prompt import summary_dialogue
from model.recommend_check_prompt import recommend_check
from tts_model.google_tts import synthesize_speech_base64
from prometheus_fastapi_instrumentator import Instrumentator # 모니터링
from typing import Optional
app = FastAPI()
# CORS 설정 추가
app.add_middleware(
CORSMiddleware,
allow_origins=["http://localhost:3000"], # 프론트엔드 Origin만 허용
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
Instrumentator().instrument(app).expose(app) #모니터링
# 캐시 딕셔너리
cache = {} # {"room_number": ["문장1", "문장2"]}
total_conversation_cache = {} # {"room_number": ["전체 문장1", "전체 문장2"]}
# 문장 데이터를 위한 Pydantic 모델 정의
class DialogueRequest(BaseModel):
room_number: str
sentence: Optional[str] = None # 기본값 None으로 설정
class SummaryRequest(BaseModel):
room_number: str
sentence: Optional[str] = None # 기본값 None으로 설정
# TTS 요청 바디 스키마 정의
class TTSRequest(BaseModel):
room_number: str
voice_type: Literal["male1", "male2", "female1", "female2"]
text: str
@app.get("/health")
async def health_check():
return {"message": "Hello ParroTalk!"}
# 캐시에 문장 추가 (중복 확인)
def add_sentence_to_cache(room_number: str, sentence: str):
# 캐시 초기화
if room_number not in cache:
cache[room_number] = []
if room_number not in total_conversation_cache:
total_conversation_cache[room_number] = []
# 중복된 문장 추가 방지
if not cache[room_number] or cache[room_number][-1] != sentence:
cache[room_number].append(sentence)
# 전체 대화 누적 캐시에 추가
total_conversation_cache[room_number].append(sentence)
@app.post("/recommendations")
async def get_recommendations(request: DialogueRequest):
sentence = request.sentence.strip() if request.sentence else ""
room_number = request.room_number
if not sentence: # sentence가 None이거나 비어 있을 경우
return {
"room_number": room_number,
"sentence": "",
"is_recommend": False,
"recommendations": []
}
try:
# 문장 캐시에 추가
add_sentence_to_cache(room_number, sentence)
# 룸 넘버별 캐시에서 문장 조합
combined_text = " ".join(cache[room_number])
total_combined_text = " ".join(total_conversation_cache[room_number]) # 전체 누적 대화 텍스트
# 추천 여부 판단
is_recommend_combined = recommend_check(combined_text)
if is_recommend_combined:
# 추천 가능하면 캐시를 비우고 결과 반환
cache[room_number].clear()
# 추천 실행 (전체 누적 문장 및 최신 문장 활용)
result = generate_sentence(total_combined_text, sentence)
# 반환값 정규화
if '응답' in result:
if isinstance(result['응답'], dict):
recommendations = [
result['응답'].get('추천 문장 1', ""),
result['응답'].get('추천 문장 2', ""),
result['응답'].get('추천 문장 3', "")
]
elif isinstance(result['응답'], list):
recommendations = [
result['응답'][0].get('추천 문장 1', ""),
result['응답'][0].get('추천 문장 2', ""),
result['응답'][0].get('추천 문장 3', "")
]
else:
recommendations = []
else:
recommendations = [
result.get('추천 문장 1', ""),
result.get('추천 문장 2', ""),
result.get('추천 문장 3', "")
]
return {
"room_number": room_number,
"sentence": sentence,
"is_recommend": True,
"recommendations": recommendations
}
else:
# 추천 불가능하면 결합된 문장만 반환
return {
"room_number": room_number,
"sentence": combined_text,
"is_recommend": False,
"recommendations": []
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error checking recommendation: {str(e)}")
@app.post("/summary")
async def summarize_dialogue(request: SummaryRequest):
dialogue_content = request.sentence.strip()
# 입력값이 공백인 경우 처리
if not dialogue_content:
return {
"summary": [],
"todo": []
}
summary_result = summary_dialogue(dialogue_content)
if summary_result is None:
return {
"summary": [],
"todo": []
}
return {
"summary": summary_result['summary'],
"todo": summary_result['todo']
}
# Text-to-Speech API 엔드포인트
@app.post("/tts")
async def synthesize_tts(request: TTSRequest):
try:
# Google TTS 호출
audio_base64 = synthesize_speech_base64(request.voice_type, request.text)
return {"status": "success", "audio_base64": audio_base64}
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8080)