Releases: PennyLaneAI/catalyst
Catalyst v0.3.2
New features
-
The experimental AutoGraph feature now supports Python
while
loops, allowing native Python loops to be captured and compiled with Catalyst. (#318)dev = qml.device("lightning.qubit", wires=4) @qjit(autograph=True) @qml.qnode(dev) def circuit(n: int, x: float): i = 0 while i < n: qml.RX(x, wires=i) i += 1 return qml.expval(qml.PauliZ(0))
>>> circuit(4, 0.32) array(0.94923542)
This feature extends the existing AutoGraph support for Python
for
loops andif
statements introduced in v0.3. Note that TensorFlow must be installed for AutoGraph support.For more details, please see the AutoGraph guide.
-
In addition to loops and conditional branches, AutoGraph now supports native Python
and
,or
andnot
operators in Boolean expressions. (#325)dev = qml.device("lightning.qubit", wires=1) @qjit(autograph=True) @qml.qnode(dev) def circuit(x: float): if x >= 0 and x < jnp.pi: qml.RX(x, wires=0) return qml.probs()
>>> circuit(0.43) array([0.95448287, 0.04551713]) >>> circuit(4.54) array([1., 0.])
Note that logical Boolean operators will only be captured by AutoGraph if all operands are dynamic variables (that is, a value known only at runtime, such as a measurement result or function argument). For other use cases, it is recommended to use the
jax.numpy.logical_*
set of functions where appropriate. -
Debug compiled programs and print dynamic values at runtime with
debug.print
(#279) (#356)You can now print arbitrary values from your running program, whether they are arrays, constants, strings, or abitrary Python objects. Note that while non-array Python objects will be printed at runtime, their string representation is captured at compile time, and thus will always be the same regardless of program inputs. The output for arrays optionally includes a descriptor for how the data is stored in memory ("memref").
@qjit def func(x: float): debug.print(x, memref=True) debug.print("exit")
>>> func(jnp.array(0.43)) MemRef: base@ = 0x5629ff2b6680 rank = 0 offset = 0 sizes = [] strides = [] data = 0.43 exit
-
Catalyst now officially supports macOS X86_64 devices, with macOS binary wheels available for both AARCH64 and X86_64. (#347) (#313)
-
It is now possible to dynamically load third-party Catalyst compatible devices directly into a pre-installed Catalyst runtime on Linux. (#327)
To take advantage of this, third-party devices must implement the
Catalyst::Runtime::QuantumDevice
interface, in addition to defining the following method:extern "C" Catalyst::Runtime::QuantumDevice* getCustomDevice() { return new CustomDevice(); }
This support can also be integrated into existing PennyLane Python devices that inherit from the
QuantumDevice
class, by defining theget_c_interface
static method.For more details, see the custom devices documentation.
Improvements
-
Return values of conditional functions no longer need to be of exactly the same type. Type promotion is automatically applied to branch return values if their types don't match. (#333)
@qjit def func(i: int, f: float): @cond(i < 3) def cond_fn(): return i @cond_fn.otherwise def otherwise(): return f return cond_fn()
>>> func(1, 4.0) array(1.0)
Automatic type promotion across conditional branches also works with AutoGraph:
@qjit(autograph=True) def func(i: int, f: float): if i < 3: i = i else: i = f return i
>>> func(1, 4.0) array(1.0)
-
AutoGraph now supports converting functions even when they are invoked through functional wrappers such as
adjoint
,ctrl
,grad
,jacobian
, etc. (#336)For example, the following should now succeed:
def inner(n): for i in range(n): qml.T(i) @qjit(autograph=True) @qml.qnode(dev) def f(n: int): adjoint(inner)(n) return qml.state()
-
To prepare for Catalyst's frontend being integrated with PennyLane, the appropriate plugin entry point interface has been added to Catalyst. (#331)
For any compiler packages seeking to be registered in PennyLane, the
entry_points
metadata under the the group namepennylane.compilers
must be added, with the following try points:-
context
: Path to the compilation evaluation context manager. This context manager should have the methodcontext.is_tracing()
, which returns True if called within a program that is being traced or captured. -
ops
: Path to the compiler operations module. This operations module may contain compiler specific versions of PennyLane operations. Within a JIT context, PennyLane operations may dispatch to these. -
qjit
: Path to the JIT compiler decorator provided by the compiler. This decorator should have the signatureqjit(fn, *args, **kwargs)
, wherefn
is the function to be compiled.
-
-
The compiler driver diagnostic output has been improved, and now includes failing IR as well as the names of failing passes. (#349)
-
The scatter operation in the Catalyst dialect now uses an SCF for loop to avoid ballooning the compiled code. (#307)
-
The
CopyGlobalMemRefPass
pass of our MLIR processing pipeline now supports dynamically shaped arrays. (#348) -
The Catalyst utility dialect is now included in the Catalyst MLIR C-API. (#345)
-
Fix an issue with the AutoGraph conversion system that would prevent the fallback to Python from working correctly in certain instances. (#352)
The following type of code is now supported:
@qjit(autograph=True) def f(): l = jnp.array([1, 2]) for _ in range(2): l = jnp.kron(l, l) return l
Breaking changes
- The axis ordering for
catalyst.jacobian
is updated to matchjax.jacobian
. Assuming we have parameters of shape[a,b]
and results of shape[c,d]
, the returned Jacobian will now have shape[c, d, a, b]
instead of[a, b, c, d]
. (#283)
Bug fixes
-
An upstream change in the PennyLane-Lightning project was addressed to prevent compilation issues in the
StateVectorLQubitDynamic
class in the runtime. The issue was introduced in #499. (#322) -
The
requirements.txt
file to build Catalyst from source has been updated with a minimum pip version,>=22.3
. Previous versions of pip are unable to perform editable installs when the system-wide site-packages are read-only, even when the--user
flag is provided. (#311) -
The frontend has been updated to make it compatible with PennyLane
MeasurementProcess
objects now being PyTrees in PennyLane version 0.33. (#315)
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi,
David Ittah,
Sergei Mironov,
Romain Moyard,
Erick Ochoa Lopez.
Catalyst v0.3.1-post1
This post-release updates the docs to include the AutoGraph guide.
Catalyst v0.3.1
New features
-
The experimental AutoGraph feature, now supports Python
for
loops, allowing native Python loops to be captured and compiled with Catalyst. (#258)dev = qml.device("lightning.qubit", wires=n) @qjit(autograph=True) @qml.qnode(dev) def f(n): for i in range(n): qml.Hadamard(wires=i) return qml.expval(qml.PauliZ(0))
This feature extends the existing AutoGraph support for Python
if
statements introduced in v0.3. Note that TensorFlow must be installed for AutoGraph support. -
The quantum control operation can now be used in conjunction with Catalyst control flow, such as loops and conditionals, via the new
catalyst.ctrl
function. (#282)Similar in behaviour to the
qml.ctrl
control modifier from PennyLane,catalyst.ctrl
can additionally wrap around quantum functions which contain control flow, such as the Catalystcond
,for_loop
, andwhile_loop
primitives.@qjit @qml.qnode(qml.device("lightning.qubit", wires=4)) def circuit(x): @for_loop(0, 3, 1) def repeat_rx(i): qml.RX(x / 2, wires=i) catalyst.ctrl(repeat_rx, control=3)() return qml.expval(qml.PauliZ(0))
>>> circuit(0.2) array(1.)
-
Catalyst now supports JAX's
array.at[index]
notation for array element assignment and updating. (#273)@qjit def add_multiply(l: jax.core.ShapedArray((3,), dtype=float), idx: int): res = l.at[idx].multiply(3) res2 = l.at[idx].add(2) return res + res2 res = add_multiply(jnp.array([0, 1, 2]), 2)
>>> res [0, 2, 10]
For more details on available methods, see the JAX documentation.
Improvements
-
A new compiler driver has been implemented in C++. This improves compile-time performance by avoiding round-tripping, which is when the entire program being compiled is dumped to a textual form and re-parsed by another tool.
This is also a requirement for providing custom metadata at the LLVM level, which is necessary for better integration with tools like Enzyme. Finally, this makes it more natural to improve error messages originating from C++ when compared to the prior subprocess-based approach. (#216)
-
Support the
braket.devices.Devices
enum class ands3_destination_folder
device options for AWS Braket remote devices. (#278) -
Improvements have been made to the build process, including avoiding unnecessary processes such as removing
opt
and downloading the wheel. (#298) -
Remove a linker warning about duplicate
rpath
s when Catalyst wheels are installed on macOS. (#314)
Bug fixes
-
Fix incompatibilities with GCC on Linux introduced in v0.3.0 when compiling user programs. Due to these, Catalyst v0.3.0 only works when clang is installed in the user environment.
-
Remove undocumented package dependency on the zlib/zstd compression library. (#308)
-
Fix filesystem issue when compiling multiple functions with the same name and
keep_intermediate=True
. (#306) -
Add support for applying the
adjoint
operation toQubitUnitary
gates.QubitUnitary
was not able to beadjoint
ed when the variable holding the unitary matrix might change. This can happen, for instance, inside of a for loop. To solve this issue, the unitary matrix gets stored in the array list via push and pops. The unitary matrix is later reconstructed from the array list andQubitUnitary
can be executed in theadjoint
ed context. (#304) (#310)
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi,
David Ittah,
Erick Ochoa Lopez,
Jacob Mai Peng,
Sergei Mironov,
Romain Moyard.
Catalyst v0.3.0
New features
-
Catalyst now officially supports macOS ARM devices, such as Apple M1/M2 machines, with macOS binary wheels available on PyPI. For more details on the changes involved to support macOS, please see the improvements section. (#229) (#232) (#233) (#234)
-
Write Catalyst-compatible programs with native Python conditional statements. (#235)
AutoGraph is a new, experimental, feature that automatically converts Python conditional statements like
if
,else
, andelif
, into their equivalent functional forms provided by Catalyst (such ascatalyst.cond
).This feature is currently opt-in, and requires setting the
autograph=True
flag in theqjit
decorator:dev = qml.device("lightning.qubit", wires=1) @qjit(autograph=True) @qml.qnode(dev) def f(x): if x < 0.5: qml.RY(jnp.sin(x), wires=0) else: qml.RX(jnp.cos(x), wires=0) return qml.expval(qml.PauliZ(0))
The implementation is based on the AutoGraph module from TensorFlow, and requires a working TensorFlow installation be available. In addition, Python loops (
for
andwhile
) are not yet supported, and do not work in AutoGraph mode.Note that there are some caveats when using this feature especially around the ues of global variables or object mutation inside of methods. A functional style is always recommended when using
qjit
or AutoGraph. -
The quantum adjoint operation can now be used in conjunction with Catalyst control flow, such as loops and conditionals. For this purpose a new instruction,
catalyst.adjoint
, has been added. (#220)catalyst.adjoint
can wrap around quantum functions which contain the Catalystcond
,for_loop
, andwhile_loop
primitives. Previously, the usage ofqml.adjoint
on functions with these primitives would result in decomposition errors. Note that a future release of Catalyst will
merge the behaviour ofcatalyst.adjoint
intoqml.adjoint
for convenience.dev = qml.device("lightning.qubit", wires=3) @qjit @qml.qnode(dev) def circuit(x): @for_loop(0, 3, 1) def repeat_rx(i): qml.RX(x / 2, wires=i) adjoint(repeat_rx)() return qml.expval(qml.PauliZ(0))
>>> circuit(0.2) array(0.99500417)
Additionally, the ability to natively represent the adjoint construct in Catalyst's program representation (IR) was added.
-
QJIT-compiled programs now support (nested) container types as inputs and outputs of compiled functions. This includes lists and dictionaries, as well as any data structure implementing the PyTree protocol. (#215) (#221)
For example, a program that accepts and returns a mix of dictionaries, lists, and tuples:
@qjit def workflow(params1, params2): res1 = params1["a"][0][0] + params2[1] return {"y1": jnp.sin(res1), "y2": jnp.cos(res1)}
>>> params1 = {"a": [[0.1], 0.2]} >>> params2 = (0.6, 0.8) >>> workflow(params1, params2) array(0.78332691)
-
Compile-time backpropagation of arbitrary hybrid programs is now supported, via integration with Enzyme AD. (#158) (#193) (#224) (#225) (#239) (#244)
This allows
catalyst.grad
to differentiate hybrid functions that contain both classical pre-processing (inside & outside of QNodes), QNodes, as well as classical post-processing (outside of QNodes) via a combination of backpropagation and quantum gradient methods.The new default for the differentiation
method
attribute incatalyst.grad
has been changed to"auto"
, which performs Enzyme-based reverse mode AD on classical code, in conjunction with the quantumdiff_method
specified on each QNode:dev = qml.device("lightning.qubit", wires=1) @qml.qnode(dev, diff_method="parameter-shift") def circuit(theta): qml.RX(jnp.exp(theta ** 2) / jnp.cos(theta / 4), wires=0) return qml.expval(qml.PauliZ(wires=0))
>>> grad = qjit(catalyst.grad(circuit, method="auto")) >>> grad(jnp.pi) array(0.05938718)
The reworked differentiation pipeline means you can now compute exact derivatives of programs with both classical pre- and post-processing, as shown below:
@qml.qnode(qml.device("lightning.qubit", wires=1), diff_method="adjoint") def circuit(theta): qml.RX(jnp.exp(theta ** 2) / jnp.cos(theta / 4), wires=0) return qml.expval(qml.PauliZ(wires=0)) def loss(theta): return jnp.pi / jnp.tanh(circuit(theta)) @qjit def grad_loss(theta): return catalyst.grad(loss)(theta)
>>> grad_loss(1.0) array(-1.90958669)
You can also use multiple QNodes with different differentiation methods:
@qml.qnode(qml.device("lightning.qubit", wires=1), diff_method="parameter-shift") def circuit_A(params): qml.RX(jnp.exp(params[0] ** 2) / jnp.cos(params[1] / 4), wires=0) return qml.probs() @qml.qnode(qml.device("lightning.qubit", wires=1), diff_method="adjoint") def circuit_B(params): qml.RX(jnp.exp(params[1] ** 2) / jnp.cos(params[0] / 4), wires=0) return qml.expval(qml.PauliZ(wires=0)) def loss(params): return jnp.prod(circuit_A(params)) + circuit_B(params) @qjit def grad_loss(theta): return catalyst.grad(loss)(theta)
>>> grad_loss(jnp.array([1.0, 2.0])) array([ 0.57367285, 44.4911605 ])
And you can differentiate purely classical functions as well:
def square(x: float): return x ** 2 @qjit def dsquare(x: float): return catalyst.grad(square)(x)
>>> dsquare(2.3) array(4.6)
Note that the current implementation of reverse mode AD is restricted to 1st order derivatives, but you can still use
catalyst.grad(method="fd")
is still available to perform a finite differences approximation of any differentiable function. -
Add support for the new PennyLane arithmetic operators. (#250)
PennyLane is in the process of replacing
Hamiltonian
andTensor
observables with a set of general arithmetic operators. These consist of Prod, Sum and SProd.By default, using dunder methods (eg.
+
,-
,@
,*
) to combine operators with scalars or other operators will createHamiltonian
andTensor
objects. However, these two methods will be deprecated in coming releases of PennyLane.To enable the new arithmetic operators, one can use
Prod
,Sum
, andSprod
directly or activate them by calling enable_new_opmath at the beginning of your PennyLane program.dev = qml.device("lightning.qubit", wires=2) @qjit @qml.qnode(dev) def circuit(x: float, y: float): qml.RX(x, wires=0) qml.RX(y, wires=1) qml.CNOT(wires=[0, 1]) return qml.expval(0.2 * qml.PauliX(wires=0) - 0.4 * qml.PauliY(wires=1))
>>> qml.operation.enable_new_opmath() >>> qml.operation.active_new_opmath() True >>> circuit(np.pi / 4, np.pi / 2) array(0.28284271)
Improvements
-
Better support for Hamiltonian observables:
-
Allow Hamiltonian observables with integer coefficients. (#248)
For example, compiling the following circuit wasn't previously allowed, but is now supported in Catalyst:
dev = qml.device("lightning.qubit", wires=2) @qjit @qml.qnode(dev) def circuit(x: float, y: float): qml.RX(x, wires=0) qml.RY(y, wires=1) coeffs = [1, 2] obs = [qml.PauliZ(0), qml.PauliZ(1)] return qml.expval(qml.Hamiltonian(coeffs, obs))
-
Allow nested Hamiltonian observables. (#255)
@qjit @qml.qnode(qml.device("lightning.qubit", wires=3)) def circuit(x, y, coeffs1, coeffs2): qml.RX(x, wires=0) qml.RX(y, wires=1) qml.RY(x + y, wires=2) obs = [ qml.PauliX(0) @ qml.PauliZ(1), qml.Hamiltonian(coeffs1, [qml.PauliZ(0) @ qml.Hadamard(2)]), ] return qml.var(qml.Hamiltonian(coeffs2, obs))
-
-
Various performance improvements:
-
The execution and compile time of programs has been reduced, by generating more efficient code and avoiding unnecessary optimizations. Specifically, a scalarization procedure was added to the MLIR pass pipeline, and LLVM IR compilation is now invoked with optimization level 0. (#217)
-
The execution time of compile...
-
Catalyst v0.2.1
Bug fixes
- Add missing OpenQASM backend in binary distribution, which relies on the latest version of the AWS Braket plugin for PennyLane to resolve dependency issues between the plugin, Catalyst, and PennyLane. The Lightning-Kokkos backend with Serial and OpenMP modes is also added to the binary distribution. #198
Improvements
-
When using OpenQASM-based devices the string representation of the circuit is printed on exception. #199
-
Use
pybind11::module
interface library instead ofpybind11::embed
in the runtime for OpenQasm backend to avoid linking to the python library at compile time. #200
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi, David Ittah.
Catalyst v0.2.0
New features
-
Catalyst programs can now be used inside of a larger JAX workflow which uses JIT compilation, automatic differentiation, and other JAX transforms. #96 #123 #167 #192
For example, call a Catalyst qjit-compiled function from within a JAX jit-compiled function:
dev = qml.device("lightning.qubit", wires=1) @qjit @qml.qnode(dev) def circuit(x): qml.RX(jnp.pi * x[0], wires=0) qml.RY(x[1] ** 2, wires=0) qml.RX(x[1] * x[2], wires=0) return qml.probs(wires=0) @jax.jit def cost_fn(weights): x = jnp.sin(weights) return jnp.sum(jnp.cos(circuit(x)) ** 2)
>>> cost_fn(jnp.array([0.1, 0.2, 0.3])) Array(1.32269195, dtype=float64)
Catalyst-compiled functions can now also be automatically differentiated via JAX, both in forward and reverse mode to first-order,
>>> jax.grad(cost_fn)(jnp.array([0.1, 0.2, 0.3])) Array([0.49249037, 0.05197949, 0.02991883], dtype=float64)
as well as vectorized using
jax.vmap
:>>> jax.vmap(cost_fn)(jnp.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])) Array([1.32269195, 1.53905377], dtype=float64)
In particular, this allows for a reduction in boilerplate when using JAX-compatible optimizers such as
jaxopt
:>>> opt = jaxopt.GradientDescent(cost_fn) >>> params = jnp.array([0.1, 0.2, 0.3]) >>> (final_params, _) = jax.jit(opt.run)(params) >>> final_params Array([-0.00320799, 0.03475223, 0.29362844], dtype=float64)
Note that, in general, best performance will be seen when the Catalyst
@qjit
decorator is used to JIT the entire hybrid workflow. However, there may be cases where you may want to delegate only the quantum part of your workflow to Catalyst, and let JAX handle classical components (for example, due to missing a feature or compatibility issue in Catalyst). -
Support for Amazon Braket devices provided via the PennyLane-Braket plugin. #118 #139 #179 #180
This enables quantum subprograms within a JIT-compiled Catalyst workflow to execute on Braket simulator and hardware devices, including remote cloud-based simulators such as SV1.
def circuit(x, y): qml.RX(y * x, wires=0) qml.RX(x * 2, wires=1) return qml.expval(qml.PauliY(0) @ qml.PauliZ(1)) @qjit def workflow(x: float, y: float): device = qml.device("braket.local.qubit", backend="braket_sv", wires=2) g = qml.qnode(device)(circuit) h = catalyst.grad(g) return h(x, y) workflow(1.0, 2.0)
For a list of available devices, please see the PennyLane-Braket documentation.
Internally, the quantum instructions are generating OpenQASM3 kernels at runtime; these are then executed on both local (
braket.local.qubit
) and remote (braket.aws.qubit
) devices backed by Amazon Braket Python SDK, with measurement results then propagated back to the frontend.Note that at initial release, not all Catalyst features are supported with Braket. In particular, dynamic circuit features, such as mid-circuit measurements, will not work with Braket devices.
-
Catalyst conditional functions defined via
@catalyst.cond
now support an arbitrary number of 'else if' chains. #104dev = qml.device("lightning.qubit", wires=1) @qjit @qml.qnode(dev) def circuit(x): @catalyst.cond(x > 2.7) def cond_fn(): qml.RX(x, wires=0) @cond_fn.else_if(x > 1.4) def cond_elif(): qml.RY(x, wires=0) @cond_fn.otherwise def cond_else(): qml.RX(x ** 2, wires=0) cond_fn() return qml.probs(wires=0)
-
Iterating in reverse is now supported with constant negative step sizes via
catalyst.for_loop
. #129dev = qml.device("lightning.qubit", wires=1) @qjit @qml.qnode(dev) def circuit(n): @catalyst.for_loop(n, 0, -1) def loop_fn(_): qml.PauliX(0) loop_fn() return measure(0)
-
Additional gradient transforms for computing the vector-Jacobian product (VJP) and Jacobian-vector product (JVP) are now available in Catalyst. #98
Use
catalyst.vjp
to compute the forward-pass value and VJP:@qjit def vjp(params, cotangent): def f(x): y = [jnp.sin(x[0]), x[1] ** 2, x[0] * x[1]] return jnp.stack(y) return catalyst.vjp(f, [params], [cotangent])
>>> x = jnp.array([0.1, 0.2]) >>> dy = jnp.array([-0.5, 0.1, 0.3]) >>> vjp(x, dy) [array([0.09983342, 0.04 , 0.02 ]), array([-0.43750208, 0.07000001])]
Use
catalyst.jvp
to compute the forward-pass value and JVP:@qjit def jvp(params, tangent): def f(x): y = [jnp.sin(x[0]), x[1] ** 2, x[0] * x[1]] return jnp.stack(y) return catalyst.jvp(f, [params], [tangent])
>>> x = jnp.array([0.1, 0.2]) >>> tangent = jnp.array([0.3, 0.6]) >>> jvp(x, tangent) [array([0.09983342, 0.04 , 0.02 ]), array([0.29850125, 0.24000006, 0.12 ])]
-
Support for multiple backend devices within a single qjit-compiled function is now available. #89
For example, if you compile the Catalyst runtime with
lightning.kokkos
support (via the compilation flagENABLE_LIGHTNING_KOKKOS=ON
), you can uselightning.qubit
andlightning.kokkos
within a singular workflow:dev1 = qml.device("lightning.qubit", wires=1) dev2 = qml.device("lightning.kokkos", wires=1) @qml.qnode(dev1) def circuit1(x): qml.RX(jnp.pi * x[0], wires=0) qml.RY(x[1] ** 2, wires=0) qml.RX(x[1] * x[2], wires=0) return qml.var(qml.PauliZ(0)) @qml.qnode(dev2) def circuit2(x): @catalyst.cond(x > 2.7) def cond_fn(): qml.RX(x, wires=0) @cond_fn.otherwise def cond_else(): qml.RX(x ** 2, wires=0) cond_fn() return qml.probs(wires=0) @qjit def cost(x): return circuit2(circuit1(x))
>>> x = jnp.array([0.54, 0.31]) >>> cost(x) array([0.80842369, 0.19157631])
-
Support for returning the variance of Hamiltonians, Hermitian matrices, and Tensors via
qml.var
has been added. #124dev = qml.device("lightning.qubit", wires=2) @qjit @qml.qnode(dev) def circuit(x): qml.RX(jnp.pi * x[0], wires=0) qml.RY(x[1] ** 2, wires=1) qml.CNOT(wires=[0, 1]) qml.RX(x[1] * x[2], wires=0) return qml.var(qml.PauliZ(0) @ qml.PauliX(1))
>>> x = jnp.array([0.54, 0.31]) >>> circuit(x) array(0.98851544)
Breaking changes
-
The
catalyst.grad
function now supports using the differentiation method defined on the QNode (via thediff_method
argument) rather than applying a global differentiation method. #163As part of this change, the
method
argument now accepts the following options:-
method="defer"
: Quantum components of the hybrid function are differentiated according to the corresponding QNodediff_method
, while the classical computation is differentiated using traditional auto-diff.With this strategy, Catalyst only currently supports QNodes with
diff_method="param-shift" and
diff_method="adjoint"`. -
method="fd"
: First-order finite-differences for the entire hybrid function. Thediff_method
argument for each QNode is ignored.
This is an intermediate step towards differentiating functions that internally call multiple QNodes, and towards supporting differentiation of classical postprocessing.
-
Improvements
-
Catalyst has been upgraded to work with JAX v0.4.13. #143 #185
-
Add a Backprop operation for using autodifferentiation (AD) at the LLVM level with Enzyme AD. The Backprop operations has a bufferization pattern and a lowering to LLVM. #107 #116
-
Error handling has been improved. The runtime now throws more descriptive and unified expressions for runtime errors and assertions. #92
-
In preparation for easier debugging, the compiler has been refactored to allow easy prototyping of new compilation pipelines. #38
In the future, this will allow the ability to generate MLIR or LLVM-IR by loading input from a string or file, rather than generating it from Python.
As part of this refactor, the following changes were made:
-
Passes are now classes. This allow developers/users looking to change flags to inherit from these passes and change the flags.
-
Passes are now passed as arguments to the compiler. Custom passes can just be passed to the compiler as an argum...
-
Catalyst v0.1.2
New features
-
Add an option to print verbose messages explaining the compilation process
#68 -
Allow
catalyst.grad
to be used on any traceable function (within a qjit context).
This means the operation is no longer resticted to acting onqml.qnode
s only.
#75
Improvements
-
Work in progress on a Lightning-Kokkos backend:
Bring feature parity to the Lightning-Kokkos backend simulator.
#55Add support for variance measurements for all observables.
#70 -
Build the runtime against qir-stdlib v0.1.0.
#58 -
Replace input-checking assertions with exceptions.
#67 -
Perform function inlining to improve optimizations and memory management within the compiler.
#72
Breaking changes
Bug fixes
-
Several fixes to address memory leaks in the compiled program:
Fix memory leaks from data that flows back into the Python environment.
#54Fix memory leaks resulting from partial bufferization at the MLIR level. This fix makes the
necessary changes to reintroduce the-buffer-deallocation
pass into the MLIR pass pipeline.
The pass guarantees that all allocations contained within a function (that is allocations that are
not returned from a function) are also deallocated.
#61Lift heap allocations for quantum op results from the runtime into the MLIR compiler core. This
allows all memref buffers to be memory managed in MLIR using the
MLIR bufferization infrastructure.
#63Eliminate all memory leaks by tracking memory allocations at runtime. The memory allocations
which are still alive when the compiled function terminates, will be freed in the
finalization / teardown function.
#78 -
Fix returning complex scalars from the compiled function.
#77
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi,
David Ittah,
Erick Ochoa Lopez,
Sergei Mironov.
Catalyst v0.1.1
New features
- Adds support for interpreting control flow operations.
#31
Improvements
- Adds fallback compiler drivers to increase reliability during linking phase. Also adds support for a
CATALYST_CC environment variable for manual specification of the compiler driver used for linking.
#30
Breaking changes
Bug fixes
-
Fixes to codecov, build-lightning, and GH actions.
#34 -
Fixes the Catalyst image path in the readme to properly render on PyPI.
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi,
Erick Ochoa Lopez.
Catalyst v0.1.0
Initial public release.
Contributors
This release contains contributions from (in alphabetical order):
Ali Asadi,
Sam Banning,
David Ittah,
Josh Izaac,
Erick Ochoa Lopez,
Sergei Mironov,
Isidor Schoch.