-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathreplay_memory.py
123 lines (106 loc) · 4 KB
/
replay_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import json
import pickle
import random
import time
from collections import deque, namedtuple
import numpy as np
import torch
class ReplayMemory(object):
def __init__(self, capacity, seed):
"""
Args:
capacity:
"""
self.capacity = capacity
self.seed = seed
self.buffer = deque(maxlen=capacity)
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.position = 0
def push(self, state, action, reward, next_state, done):
"""
Args:
state:
action:
reward:
next_state:
done:
"""
# if len(self.buffer) < self.capacity:
# self.buffer.append(None)
experience = self.experience(state, action, reward, next_state, done)
self.buffer.append(experience)
def sample(self, batch_size):
"""
Args:
batch_size:
"""
out = random.sample(self.buffer, k=batch_size)
states, actions, rewards, next_states, dones = map(np.stack, zip(*out))
return states, actions, rewards, next_states, dones
def forget_last(self, num_episode_to_forget):
"""
Args:
num_episode_to_forget:
"""
for i in range(num_episode_to_forget):
self.buffer.pop()
def __len__(self):
return len(self.buffer)
def dump(self, fp):
out = list(self.buffer)
states = list()
actions = list()
rewards = list()
next_states = list()
dones = list()
for item in out:
states.append(item[0].tolist())
actions.append(item[1].tolist())
rewards.append(item[2])
next_states.append(item[3].tolist())
dones.append(item[4])
pickle.dump((states, actions, rewards, next_states, dones), fp)
pass
def separate_out_data_types(self, experiences):
"""Puts the sampled experience into the correct format for a PyTorch neural network"""
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float()
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float()
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float()
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float()
dones = torch.from_numpy(np.vstack([int(e.done) for e in experiences if e is not None])).float()
return states, actions, rewards, next_states, dones
def load(self, fp):
(states, actions, rewards, next_states, dones) = pickle.load(fp)
self.buffer.clear()
states = np.array(states)
actions = np.array(actions)
rewards = np.array(rewards)
next_states = np.array(next_states)
dones = np.array(dones)
for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones):
self.push(state, action, reward, next_state, done)
pass
if __name__ == '__main__':
memory = ReplayMemory(10, 1)
print(len(memory))
for i in range(15):
memory.push(np.ones((32, 32)) * i, np.ones((32, 32)) * i, i, np.ones((32, 32)) * i, i)
print(len(memory))
memory.forget_last(2)
print(len(memory))
ts = time.time()
with open("memory.pkl", "wb") as pickle_out:
memory.dump(pickle_out)
delta = time.time() - ts
print(round(delta, 2))
ts = time.time()
memory2 = ReplayMemory(10, 1)
with open("memory.pkl", "rb") as pickle_out:
memory2.load(pickle_out)
print(round(delta, 2))
print(len(memory))
one, two, three, four, five = memory.sample(2)
for i in range(20050):
memory.push(np.ones((32, 32)) * i, np.ones((32, 32)) * i, i, np.ones((32, 32)) * i, i)
for i in range(3):
print(memory.sample(2))