-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathplay_cozmo.py
209 lines (181 loc) · 7.85 KB
/
play_cozmo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import datetime
import json
import logging
import os
import sys
import time
import cozmo
import gym
import gym_cozmo
import math
from tensorboard import program
from my_logging import Log
from sac import SAC
def initial_setup() -> (argparse.Namespace, str, Log, bool):
"""
Initialization of default parameters and parsing of command line arguments.
:return: arguments, name of the main folder of the experiment and logger.
:rtype: (argparse.Namespace, str, Log, bool)
"""
# Environment
env_name = "CozmoDriver-v0"
seed = math.floor(time.time())
# Evaluation
eval = True
eval_every = 20
eval_episode = 5
# Net and SAC parameters
policy = "Gaussian"
gamma = 0.99
tau = 0.005
lr = 0.0003
alpha = 0.2
autotune_entropy = True
hidden_size = 256
img_h = 64
img_w = 64
# Episode
warm_up_episodes = 10
num_episode = 10000
max_num_run = 5
batch_size = 256
replay_size = 30000
min_replay_size = 300
state_buffer_size = 2
updates_per_episode = 100
target_update = 1
parser = argparse.ArgumentParser(description='SAC Implementation with CNN or NN')
parser.add_argument('--env_name', default=env_name, help='Name of the OpenAI Gym environment to run')
parser.add_argument('--policy', default=policy, help='Gaussian | Deterministic policy to use in the algorithm')
parser.add_argument('--eval', type=bool, default=eval, help='Enable eval of the learned policy')
parser.add_argument('--eval_every', type=int, default=eval_every, help='Evaluate every X episodes')
parser.add_argument('--eval_episode', type=int, default=eval_episode, help='Number of episode to test')
parser.add_argument('--gamma', type=float, default=gamma, metavar='G', help='Discount factor for reward')
parser.add_argument('--tau', type=float, default=tau, metavar='G', help='Tau coefficient (Target)')
parser.add_argument('--lr', type=float, default=lr, metavar='G', help='learning rate')
parser.add_argument('--alpha', type=float, default=alpha, metavar='G', help='Alpha Temperature parameter')
parser.add_argument('--autotune_entropy', type=bool, default=autotune_entropy, metavar='G', help='Alpha Autotune')
parser.add_argument('--seed', type=int, default=seed, metavar='N', help='Specify a Seed')
parser.add_argument('--batch_size', type=int, default=batch_size, metavar='N', help='Batch size')
parser.add_argument('--max_num_run', type=int, default=max_num_run, metavar='N', help='Max number of runs')
parser.add_argument('--num_episode', type=int, default=num_episode, metavar='N', help='Max #episode per run')
parser.add_argument('--hidden_size', type=int, default=hidden_size, metavar='N', help='Hidden size NN')
parser.add_argument('--updates_per_episode', type=int, default=updates_per_episode, metavar='N',
help='#updates for each step')
parser.add_argument('--warm_up_episodes', type=int, default=warm_up_episodes, metavar='N', help='Warm-Up steps')
parser.add_argument('--target_update', type=int, default=target_update, metavar='N', help='Target updates / update')
parser.add_argument('--replay_size', type=int, default=replay_size, metavar='N', help='Size of replay buffer')
parser.add_argument('--min_replay_size', type=int, default=min_replay_size, metavar='N',
help='Min Size of replay buffer')
parser.add_argument('--state_buffer_size', type=int, default=state_buffer_size, metavar='N',
help='Size of state buffer')
parser.add_argument('--cuda', action="store_true", help='run on CUDA')
parser.add_argument('--pics', action="store_true", help='run on Image')
parser.add_argument('--img_h', type=int, default=img_h, metavar='N', help='Size of image (H)')
parser.add_argument('--img_w', type=int, default=img_w, metavar='N', help='Size of image (W)')
parser.add_argument('--load_from_json', type=str, default=None, help='Load From File')
parser.add_argument('--run', type=int, default=0, help='Run to Play')
parser.add_argument('--episode', type=int, default=20, help='Episode to Play')
parser.add_argument('--restore', type=str, default=None, help='Folder of experiment to restore')
args = parser.parse_args()
if args.restore:
folder_ = args.restore
restore = True
else:
folder_ = './runs/{}_SAC_CozmoDriver-v0/'.format(datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
restore = False
os.mkdir(folder_)
logger_ = Log(folder_)
if args.load_from_json is not None:
try:
argparse_dict = vars(args)
with open(args.load_from_json) as data_file:
data = json.load(data_file)
argparse_dict.update(data)
except FileNotFoundError:
logger_.error("File not Valid")
exit(1)
elif args.restore:
try:
argparse_dict = vars(args)
with open(args.restore + "hp.json") as data_file:
data = json.load(data_file)
argparse_dict.update(data)
except FileNotFoundError:
logger_.error("File not Valid")
exit(1)
return args, folder_, logger_, restore
class TensorBoardTool:
"""
Class used to initialize and start TensorBoardX.
"""
def __init__(self, dir_path: str):
"""
Constructor
:param dir_path: path of TensorBoardX experiment files
:type dir_path: str
"""
self.dir_path = dir_path
def run(self) -> str:
"""
Run TensorBoardX using the args specified in the code.
:return: url
:rtype: str
"""
# Remove http messages
log = logging.getLogger('werkzeug').setLevel(logging.ERROR)
# Start tensorboard server
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', self.dir_path, '--host', 'localhost', '--samples_per_plugin', 'images=2000'
''])
url = tb.launch()
sys.stdout.write('TensorBoard at %s \n' % url)
return url
def run(sdk_conn: cozmo.conn):
"""
Container of the main loop. It is necessary to work with Cozmo. This is called by the cozmo.connect
presents in the main loop of this file.
:param sdk_conn: SDK connection to Anki Cozmo
:type sdk_conn: cozmo.conn
:return: nothing
:rtype: nothing
"""
gettrace = getattr(sys, 'gettrace', None)
if gettrace is not None and gettrace():
debug = True
else:
debug = False
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
robot = sdk_conn.wait_for_robot()
robot.enable_device_imu(True, True, True)
# Turn on image receiving by the camera
robot.camera.image_stream_enabled = True
# Setting up Hyper-Parameters
args, folder, logger, restore = initial_setup()
# if not debug:
# tb_tool = TensorBoardTool(folder)
# tb_tool.run()
logger.debug("Initial setup completed.")
# Create JSON of Hyper-Parameters for reproducibility
with open(folder + "hp.json", 'w') as outfile:
json.dump(vars(args), outfile)
# Initialize Environment
gym_cozmo.initialize(robot, args.img_h, args.img_w)
env = gym.make(args.env_name)
# Setup the agent
agent = SAC(args.state_buffer_size, env.action_space, env, args, folder, logger)
i_run = args.run
i_epi = args.episode
agent.load_model_to_play(args.env_name, folder, i_run, i_epi)
agent.play()
env.close()
logger.important("Program closed correctly!")
if __name__ == '__main__':
# cozmo.setup_basic_logging()
try:
cozmo.connect(run)
except KeyboardInterrupt as e:
pass
except cozmo.ConnectionError as e:
sys.exit("A connection error occurred: %s" % e)