-
-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathingest.py
185 lines (162 loc) · 5.97 KB
/
ingest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import logging
import os
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
import click
import torch
from langchain.docstore.document import Document
from langchain.text_splitter import Language, RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from utils import get_embeddings
from constants import (
CHROMA_SETTINGS,
DOCUMENT_MAP,
EMBEDDING_MODEL_NAME,
INGEST_THREADS,
PERSIST_DIRECTORY,
SOURCE_DIRECTORY,
)
import nltk
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger_eng')
def file_log(logentry):
file1 = open("file_ingest.log", "a")
file1.write(logentry + "\n")
file1.close()
print(logentry + "\n")
def load_single_document(file_path: str) -> Document:
# Loads a single document from a file path
try:
file_extension = os.path.splitext(file_path)[1]
loader_class = DOCUMENT_MAP.get(file_extension)
if loader_class:
file_log(file_path + " loaded.")
loader = loader_class(file_path)
else:
file_log(file_path + " document type is undefined.")
raise ValueError("Document type is undefined")
return loader.load()[0]
except Exception as ex:
file_log("%s loading error: \n%s" % (file_path, ex))
return None
def load_document_batch(filepaths):
logging.info("Loading document batch")
# create a thread pool
with ThreadPoolExecutor(len(filepaths)) as exe:
# load files
futures = [exe.submit(load_single_document, name) for name in filepaths]
# collect data
if futures is None:
file_log(name + " failed to submit")
return None
else:
data_list = [future.result() for future in futures]
# return data and file paths
return (data_list, filepaths)
def load_documents(source_dir: str) -> list[Document]:
# Loads all documents from the source documents directory, including nested folders
paths = []
for root, _, files in os.walk(source_dir):
for file_name in files:
print("Importing: " + file_name)
file_extension = os.path.splitext(file_name)[1]
source_file_path = os.path.join(root, file_name)
if file_extension in DOCUMENT_MAP.keys():
paths.append(source_file_path)
# Have at least one worker and at most INGEST_THREADS workers
n_workers = min(INGEST_THREADS, max(len(paths), 1))
chunksize = round(len(paths) / n_workers)
docs = []
with ProcessPoolExecutor(n_workers) as executor:
futures = []
# split the load operations into chunks
for i in range(0, len(paths), chunksize):
# select a chunk of filenames
filepaths = paths[i : (i + chunksize)]
# submit the task
try:
future = executor.submit(load_document_batch, filepaths)
except Exception as ex:
file_log("executor task failed: %s" % (ex))
future = None
if future is not None:
futures.append(future)
# process all results
for future in as_completed(futures):
# open the file and load the data
try:
contents, _ = future.result()
docs.extend(contents)
except Exception as ex:
file_log("Exception: %s" % (ex))
return docs
def split_documents(documents: list[Document]) -> tuple[list[Document], list[Document]]:
# Splits documents for correct Text Splitter
text_docs, python_docs = [], []
for doc in documents:
if doc is not None:
file_extension = os.path.splitext(doc.metadata["source"])[1]
if file_extension == ".py":
python_docs.append(doc)
else:
text_docs.append(doc)
return text_docs, python_docs
@click.command()
@click.option(
"--device_type",
default="cuda" if torch.cuda.is_available() else "cpu",
type=click.Choice(
[
"cpu",
"cuda",
"ipu",
"xpu",
"mkldnn",
"opengl",
"opencl",
"ideep",
"hip",
"ve",
"fpga",
"ort",
"xla",
"lazy",
"vulkan",
"mps",
"meta",
"hpu",
"mtia",
],
),
help="Device to run on. (Default is cuda)",
)
def main(device_type):
# Load documents and split in chunks
logging.info(f"Loading documents from {SOURCE_DIRECTORY}")
documents = load_documents(SOURCE_DIRECTORY)
text_documents, python_documents = split_documents(documents)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
python_splitter = RecursiveCharacterTextSplitter.from_language(
language=Language.PYTHON, chunk_size=880, chunk_overlap=200
)
texts = text_splitter.split_documents(text_documents)
texts.extend(python_splitter.split_documents(python_documents))
logging.info(f"Loaded {len(documents)} documents from {SOURCE_DIRECTORY}")
logging.info(f"Split into {len(texts)} chunks of text")
"""
(1) Chooses an appropriate langchain library based on the enbedding model name. Matching code is contained within fun_localGPT.py.
(2) Provides additional arguments for instructor and BGE models to improve results, pursuant to the instructions contained on
their respective huggingface repository, project page or github repository.
"""
embeddings = get_embeddings(device_type)
logging.info(f"Loaded embeddings from {EMBEDDING_MODEL_NAME}")
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
)
main()