@@ -463,11 +463,11 @@ <h2>PyTorch ๋ชจ๋ธ ์์ฑ์ ๊ธฐ์ด<a class="headerlink" href="#pytorch" title="
463
463
< span class ="nb "> print</ span > < span class ="p "> (</ span > < span class ="n "> my_cell</ span > < span class ="p "> (</ span > < span class ="n "> x</ span > < span class ="p "> ,</ span > < span class ="n "> h</ span > < span class ="p "> ))</ span >
464
464
</ pre > </ div >
465
465
</ div >
466
- < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[0.3753 , 0.8249 , 0.8435 , 0.5375 ],
467
- [0.5665 , 0.7241 , 0.8127 , 0.5566 ],
468
- [0.8290 , 0.6250 , 0.5181 , 0.7576 ]]), tensor([[0.3753 , 0.8249 , 0.8435 , 0.5375 ],
469
- [0.5665 , 0.7241 , 0.8127 , 0.5566 ],
470
- [0.8290 , 0.6250 , 0.5181 , 0.7576 ]]))
466
+ < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[0.6129 , 0.9023 , 0.2475 , 0.6643 ],
467
+ [0.5896 , 0.7913 , 0.2361 , 0.6807 ],
468
+ [0.8149 , 0.8679 , 0.5661 , 0.7660 ]]), tensor([[0.6129 , 0.9023 , 0.2475 , 0.6643 ],
469
+ [0.5896 , 0.7913 , 0.2361 , 0.6807 ],
470
+ [0.8149 , 0.8679 , 0.5661 , 0.7660 ]]))
471
471
</ pre > </ div >
472
472
</ div >
473
473
< p > ์ฐ๋ฆฌ๋ ๋ค์ ์์
์ ์ํํ์ต๋๋ค.:</ p >
@@ -502,11 +502,11 @@ <h2>PyTorch ๋ชจ๋ธ ์์ฑ์ ๊ธฐ์ด<a class="headerlink" href="#pytorch" title="
502
502
< div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > MyCell(
503
503
(linear): Linear(in_features=4, out_features=4, bias=True)
504
504
)
505
- (tensor([[-0.3062, 0.7067, 0.3896, -0.4582 ],
506
- [ 0.1069, 0.5894, 0.6158, -0.3121 ],
507
- [ 0.6238, 0.6729, 0.1078, 0.1524 ]], grad_fn=<TanhBackward0>), tensor([[-0.3062, 0.7067, 0.3896, -0.4582 ],
508
- [ 0.1069, 0.5894, 0.6158, -0.3121 ],
509
- [ 0.6238, 0.6729, 0.1078, 0.1524 ]], grad_fn=<TanhBackward0>))
505
+ (tensor([[0.6727, 0.7429, 0.6171, 0.8134 ],
506
+ [0.7613, 0.3871, 0.5461, 0.8945 ],
507
+ [0.8020, 0.6856, 0.8246, 0.8536 ]], grad_fn=<TanhBackward0>), tensor([[0.6727, 0.7429, 0.6171, 0.8134 ],
508
+ [0.7613, 0.3871, 0.5461, 0.8945 ],
509
+ [0.8020, 0.6856, 0.8246, 0.8536 ]], grad_fn=<TanhBackward0>))
510
510
</ pre > </ div >
511
511
</ div >
512
512
< p > ๋ชจ๋ < code class ="docutils literal notranslate "> < span class ="pre "> MyCell</ span > </ code > ์ ์ฌ์ ์ํ์ง๋ง, ์ด๋ฒ์๋ < code class ="docutils literal notranslate "> < span class ="pre "> self.linear</ span > </ code > ์์ฑ์ ์ถ๊ฐํ๊ณ
@@ -551,11 +551,11 @@ <h2>PyTorch ๋ชจ๋ธ ์์ฑ์ ๊ธฐ์ด<a class="headerlink" href="#pytorch" title="
551
551
(dg): MyDecisionGate()
552
552
(linear): Linear(in_features=4, out_features=4, bias=True)
553
553
)
554
- (tensor([[ 0.2797 , 0.6145 , 0.6797, -0.0291 ],
555
- [ 0.2716, 0.4800 , 0.8101, -0.2632 ],
556
- [ 0.5457 , 0.8588 , 0.6202, -0.2416 ]], grad_fn=<TanhBackward0>), tensor([[ 0.2797 , 0.6145 , 0.6797, -0.0291 ],
557
- [ 0.2716, 0.4800 , 0.8101, -0.2632 ],
558
- [ 0.5457 , 0.8588 , 0.6202, -0.2416 ]], grad_fn=<TanhBackward0>))
554
+ (tensor([[ 0.3327 , 0.4531 , 0.6877, 0.3679 ],
555
+ [ 0.3763, -0.0695 , 0.6067, 0.5236 ],
556
+ [ 0.5550 , 0.3187 , 0.8690, 0.5507 ]], grad_fn=<TanhBackward0>), tensor([[ 0.3327 , 0.4531 , 0.6877, 0.3679 ],
557
+ [ 0.3763, -0.0695 , 0.6067, 0.5236 ],
558
+ [ 0.5550 , 0.3187 , 0.8690, 0.5507 ]], grad_fn=<TanhBackward0>))
559
559
</ pre > </ div >
560
560
</ div >
561
561
< p > MyCell ํด๋์ค๋ฅผ ๋ค์ ์ ์ํ์ง๋ง, ์ฌ๊ธฐ์ < code class ="docutils literal notranslate "> < span class ="pre "> MyDecisionGate</ span > </ code > ๋ฅผ ์ ์ํ์ต๋๋ค.
@@ -567,7 +567,7 @@ <h2>PyTorch ๋ชจ๋ธ ์์ฑ์ ๊ธฐ์ด<a class="headerlink" href="#pytorch" title="
567
567
๊ณ์ฐํ ๋ ๊ฑฐ๊พธ๋ก ์ฌ์ํฉ๋๋ค. ์ด๋ฐ ๋ฐฉ์์ผ๋ก, ํ๋ ์์ํฌ๋ ์ธ์ด์ ๋ชจ๋ ๊ตฌ๋ฌธ์
568
568
๋ํ ๋ฏธ๋ถ๊ฐ์ ๋ช
์์ ์ผ๋ก ์ ์ํ ํ์๊ฐ ์์ต๋๋ค.</ p >
569
569
< div class ="figure align-default " id ="id8 ">
570
- < img alt ="์คํ ๊ทธ๋ผ๋๊ฐ ์๋ํ๋ ๋ฐฉ์ " src ="https://github.com/pytorch/pytorch/raw/master /docs/source/_static/img/dynamic_graph.gif " />
570
+ < img alt ="์คํ ๊ทธ๋ผ๋๊ฐ ์๋ํ๋ ๋ฐฉ์ " src ="https://github.com/pytorch/pytorch/raw/main /docs/source/_static/img/dynamic_graph.gif " />
571
571
< p class ="caption "> < span class ="caption-text "> ์คํ ๊ทธ๋ผ๋๊ฐ ์๋ํ๋ ๋ฐฉ์</ span > < a class ="headerlink " href ="#id8 " title ="์ด ์ด๋ฏธ์ง์ ๋ํ ํผ๋จธ๋งํฌ "> ยถ</ a > </ p >
572
572
</ div >
573
573
</ div >
@@ -600,11 +600,11 @@ <h3><code class="docutils literal notranslate"><span class="pre">Module</span></
600
600
(linear): Linear(original_name=Linear)
601
601
)
602
602
603
- (tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
604
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
605
- [-0.0253, 0.4354, 0.1660, 0.2262 ]], grad_fn=<TanhBackward0>), tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
606
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
607
- [-0.0253, 0.4354, 0.1660, 0.2262 ]], grad_fn=<TanhBackward0>))
603
+ (tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
604
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
605
+ [0.9648, 0.7171, 0.8723, 0.8622 ]], grad_fn=<TanhBackward0>), tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
606
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
607
+ [0.9648, 0.7171, 0.8723, 0.8622 ]], grad_fn=<TanhBackward0>))
608
608
</ pre > </ div >
609
609
</ div >
610
610
< p > ์ด์ง ์์ผ๋ก ๋์๊ฐ < code class ="docutils literal notranslate "> < span class ="pre "> MyCell</ span > </ code > ์ ๋ ๋ฒ์งธ ๋ฒ์ ์ ๊ฐ์ ธ์์ต๋๋ค. ์ด์ ์ ์ด๊ฒ์
@@ -661,17 +661,17 @@ <h3><code class="docutils literal notranslate"><span class="pre">Module</span></
661
661
< span class ="nb "> print</ span > < span class ="p "> (</ span > < span class ="n "> traced_cell</ span > < span class ="p "> (</ span > < span class ="n "> x</ span > < span class ="p "> ,</ span > < span class ="n "> h</ span > < span class ="p "> ))</ span >
662
662
</ pre > </ div >
663
663
</ div >
664
- < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
665
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
666
- [-0.0253, 0.4354, 0.1660, 0.2262 ]], grad_fn=<TanhBackward0>), tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
667
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
668
- [-0.0253, 0.4354, 0.1660, 0.2262 ]], grad_fn=<TanhBackward0>))
669
- (tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
670
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
671
- [-0.0253, 0.4354, 0.1660, 0.2262 ]],
672
- grad_fn=<DifferentiableGraphBackward>), tensor([[ 0.7324, -0.3243, 0.1321, 0.1625 ],
673
- [ 0.0783, 0.4072, 0.1977, -0.2026 ],
674
- [-0.0253, 0.4354, 0.1660, 0.2262 ]],
664
+ < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
665
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
666
+ [0.9648, 0.7171, 0.8723, 0.8622 ]], grad_fn=<TanhBackward0>), tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
667
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
668
+ [0.9648, 0.7171, 0.8723, 0.8622 ]], grad_fn=<TanhBackward0>))
669
+ (tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
670
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
671
+ [0.9648, 0.7171, 0.8723, 0.8622 ]],
672
+ grad_fn=<DifferentiableGraphBackward>), tensor([[0.9564, 0.6855, 0.8985, 0.6681 ],
673
+ [0.9028, 0.4467, 0.9141, 0.7140 ],
674
+ [0.9648, 0.7171, 0.8723, 0.8622 ]],
675
675
grad_fn=<DifferentiableGraphBackward>))
676
676
</ pre > </ div >
677
677
</ div >
@@ -765,11 +765,11 @@ <h2>์คํฌ๋ฆฝํ
์ ์ฌ์ฉํ์ฌ ๋ชจ๋ ๋ณํ<a class="headerlink" href="#id4"
765
765
< span class ="n "> traced_cell</ span > < span class ="p "> (</ span > < span class ="n "> x</ span > < span class ="p "> ,</ span > < span class ="n "> h</ span > < span class ="p "> )</ span >
766
766
</ pre > </ div >
767
767
</ div >
768
- < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[0.6585, 0.0558, 0.3720, 0.5105 ],
769
- [0.8285, 0.5487, 0.5880, 0.2457 ],
770
- [0.4929, 0.2075, 0.2141, 0.6373 ]], grad_fn=<TanhBackward0>), tensor([[0.6585, 0.0558, 0.3720, 0.5105 ],
771
- [0.8285, 0.5487, 0.5880, 0.2457 ],
772
- [0.4929, 0.2075, 0.2141, 0.6373 ]], grad_fn=<TanhBackward0>))
768
+ < div class ="sphx-glr-script-out highlight-none notranslate "> < div class ="highlight "> < pre > < span > </ span > (tensor([[ 0.0281, 0.9534, 0.0623, -0.0350 ],
769
+ [ 0.4146, 0.9282, 0.3834, 0.3907 ],
770
+ [ 0.7277, 0.7082, 0.2041, -0.0696 ]], grad_fn=<TanhBackward0>), tensor([[ 0.0281, 0.9534, 0.0623, -0.0350 ],
771
+ [ 0.4146, 0.9282, 0.3834, 0.3907 ],
772
+ [ 0.7277, 0.7082, 0.2041, -0.0696 ]], grad_fn=<TanhBackward0>))
773
773
</ pre > </ div >
774
774
</ div >
775
775
< div class ="section " id ="id5 ">
@@ -875,7 +875,7 @@ <h3>๋ ์ฝ์๊ฑฐ๋ฆฌ<a class="headerlink" href="#id7" title="์ด ์ ๋ชฉ์ ๋
875
875
< p > ํํ ๋ฆฌ์ผ์ ์๋ฃํ์ต๋๋ค! ๊ด๋ จ ๋ฐ๋ชจ๋ฅผ ๋ณด๋ ค๋ฉด TorchScript๋ฅผ ์ฌ์ฉํ์ฌ ๊ธฐ๊ณ ๋ฒ์ญ
876
876
๋ชจ๋ธ์ ๋ณํํ๊ธฐ ์ํ NeurIPS ๋ฐ๋ชจ๋ฅผ ํ์ธํ์ญ์์ค:
877
877
< a class ="reference external " href ="https://colab.research.google.com/drive/1HiICg6jRkBnr5hvK2-VnMi88Vi9pUzEJ "> https://colab.research.google.com/drive/1HiICg6jRkBnr5hvK2-VnMi88Vi9pUzEJ</ a > </ p >
878
- < p class ="sphx-glr-timing "> < strong > Total running time of the script:</ strong > ( 0 minutes 0.671 seconds)</ p >
878
+ < p class ="sphx-glr-timing "> < strong > Total running time of the script:</ strong > ( 0 minutes 0.368 seconds)</ p >
879
879
< div class ="sphx-glr-footer sphx-glr-footer-example docutils container " id ="sphx-glr-download-beginner-intro-to-torchscript-tutorial-py ">
880
880
< div class ="sphx-glr-download sphx-glr-download-python docutils container ">
881
881
< p > < a class ="reference download internal " download ="" href ="../_downloads/07d05907b3ff859aeed5f76f1acc5df4/Intro_to_TorchScript_tutorial.py "> < code class ="xref download docutils literal notranslate "> < span class ="pre "> Download</ span > < span class ="pre "> Python</ span > < span class ="pre "> source</ span > < span class ="pre "> code:</ span > < span class ="pre "> Intro_to_TorchScript_tutorial.py</ span > </ code > </ a > </ p >
0 commit comments