forked from d9w/evolution
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2_overview.html
220 lines (201 loc) · 9.11 KB
/
2_overview.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
<!doctype html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<title>Overview of Evolutionary Computation</title>
<link rel="stylesheet" href="../reveal/css/reset.css">
<link rel="stylesheet" href="../reveal/css/reveal.css">
<link rel="stylesheet" href="../reveal/css/theme/evo.css">
<!-- <link rel="stylesheet" href="../reveal/css/custom.css"> -->
<!-- Theme used for syntax highlighting of code -->
<link rel="stylesheet" href="../reveal/lib/css/zenburn.css">
<!-- Printing and PDF exports -->
<script>
var link = document.createElement( 'link' );
link.rel = 'stylesheet';
link.type = 'text/css';
link.href = window.location.search.match( /print-pdf/gi ) ? '../reveal/css/print/pdf.css' : '../reveal/css/print/paper.css';
document.getElementsByTagName( 'head' )[0].appendChild( link );
</script>
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<h1>Evolutionary Computation</h1>
<h3>Overview</h3>
<br />
<img src="../imgs/logo.png" width="30%" height="auto">
</section>
<section>
<h2>Evolutionary Algorithm</h2>
<br />
<img src="../imgs/AlgoG.png" width="30%" height="auto">
<br />
<br />
Same pattern for (almost) all evolutionary methods
</section>
<section>
<h2>Examples</h2>
<br />
<iframe width="560" height="315" src="https://www.youtube.com/embed/v9ofyPwzkxA" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/z9ptOeByLA4" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<br/>
<iframe width="560" height="315" src="https://www.youtube.com/embed/qv6UVOQ0F44" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/T-c17RKh3uE" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</section>
<section>
<h2>Historical perspective</h2>
<br />
<ul>
<li>Evolutionary Strategies</li>
<ul>
<li>developed by Rechenberg, Schwefel, etc. in 1960s</li>
<li>focus: real-valued parameter optimization</li>
</ul>
<li>Evolutionary Programming</li>
<ul>
<li>developed by Fogel et al in 1960s</li>
<li>focus: evolve intelligent behavior with Finite State Machines</li>
</ul>
<li>Genetic Algorithms</li>
<ul>
<li>developed by Holland in 1960s</li>
<li>focus: robust, adaptive systems, reproduction via mutation and recombination</li>
</ul>
<li>Genetic Programming</li>
<ul>
<li>developed by Koza in 1988</li>
<li>focus: evolution of programs</li>
</ul>
</ul>
</section>
<section>
<h2>Applications</h2>
<br/>
<ul>
<li>Software design</li>
<li>Robotics and hardware design</li>
<li>Biology and bioinformatics</li>
<li>Management, scheduling</li>
<li>Economics, trading systems</li>
<li><a href="https://en.wikipedia.org/wiki/List_of_genetic_algorithm_applications">and more</a></li>
</ul>
<br/>
<br/>
<img src="../imgs/antenna.jpg">
</section>
<section>
<h2>Well-known algorithms</h2>
<br/>
<ul>
<li>CMA-ES</li>
<ul>
<li>Covariance Matrix Adaptation Evolutionary Strategy</li>
<li>Continuous optimization</li>
<li>Tutorial 2</li>
</ul>
<li>NSGA-II</li>
<ul>
<li>Non-dominated Sorting Genetic Algorithm II</li>
<li>Multi-objective optimization</li>
<li>Tutorial 3</li>
</ul>
<li>NEAT</li>
<ul>
<li>Neuroevolution of Augmenting Topologies</li>
<li>Evolution of neural networks</li>
<li>Tutorial 5</li>
</ul>
<li>MAP-Elites</li>
<ul>
<li>Illuminating Search Spaces by Mapping Elites</li>
<li>Evolution of behavior</li>
<li>Tutorial 6</li>
</ul>
</ul>
<img src="../imgs/cmaes.png" width="40%" height="auto">
</section>
<section>
<h2>Resources</h2>
<br/>
Evolutionary computation methods in many languages
<br/>
<br/>
<ul>
<li><a href="https://cs.gmu.edu/~eclab/projects/ecj/">ECJ</a>: very mature, general framework, Java</li>
<li><a href="http://gplab.sourceforge.net/">GPLAB</a>: genetic programming, MATLAB</li>
<li><a href="http://www.mathworks.com/products/global-optimization/index.html">Optimization Toolbox</a>: implements genetic algorithm, MATLAB</li>
<li><a href="https://github.com/CMA-ES/pycma">pycma</a>: CMA-ES, Python</li>
<li><a href="https://github.com/chgagne/beagle">BEAGLE</a>: framework, C++</li>
<li><a href="https://github.com/Hintzelab/MABE">MABE</a>: new framework, C++</li>
<li><a href="https://github.com/MaxHalford/eaopt">eaopt</a>: new generic, Go</li>
</ul>
<br/>
<br/>
and many many more
</section>
<section>
<h2>Not in this class</h2>
<br/>
<ul>
<li><a href="https://en.wikipedia.org/wiki/Estimation_of_distribution_algorithm">Estimation of distribution algorithms</a></li>
<li><a href="https://en.wikipedia.org/wiki/Evolutionary_programming">Evolutionary Programming</a></li>
<li><a href="https://en.wikipedia.org/wiki/Artificial_immune_system">Artificial Immune Systems</a></li>
<li><a href="https://en.wikipedia.org/wiki/Learning_classifier_system">Learning Classifier Systems</a></li>
<li><a href="https://en.wikipedia.org/wiki/Surrogate_model">Surrogate models</a></li>
<li><a href="https://en.wikipedia.org/wiki/Swarm_intelligence">Swarm intelligence</a></li>
<li><a href="https://en.wikipedia.org/wiki/Particle_swarm_optimization">Particle Swarm Optimization</a></li>
<li><a href="https://en.wikipedia.org/wiki/Simulated_annealing">Simulated annealing</a></li>
</ul>
<br/>
<br/>
<div class="textbox">
GECCO (Genetic and Evolutionary Computation Conference) <a href="https://dl.acm.org/doi/proceedings/10.1145/3205651">Proceedings</a> include excellent tutorials
</div>
</section>
<section>
<h2>Exercise</h2>
<br/>
No exercise!
<br/>
Look at links from this presentation, watch the videos
<br/>
<br/>
<iframe width="560" height="315" src="https://www.youtube.com/embed/CXTZHHQ7ZiQ" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
</section>
</div>
<div id="footer-container" style="display:none;">
<div id="footer">
Evolutionary Computation by Dennis G. Wilson
<br />
<a href="https://github.com/d9w/evolution/">https://github.com/d9w/evolution/</a>
<br />
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/80x15.png" /></a>
</div>
</div>
</div>
<script src="../reveal/js/reveal.js"></script>
<script src="../reveal/js/jquery-3.5.0.min.js"></script>
<script>
Reveal.initialize({
width: "100%",
height: "100%",
slideNumber: 'c',
transition: 'none',
progress: true,
hash: true,
center: false,
dependencies: [
{ src: '../reveal/plugin/markdown/marked.js' },
{ src: '../reveal/plugin/markdown/markdown.js' },
{ src: '../reveal/plugin/highlight/highlight.js' },
{ src: '../reveal/plugin/notes/notes.js', async: true }
]
});
var footer = $('#footer-container').html();
$('div.reveal').append(footer);
</script>
</body>
</html>