-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDrips.py
188 lines (161 loc) · 6.86 KB
/
Drips.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
"""
Document here, for DRIPS model
"""
""" Required Modules """
import src.drips as drips
""" Optional Modules """
import sys
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import test
from src.casegeom import readValidationFile
from scipy.interpolate import interp1d
var = ['Ta1','Ta2','mvdot','mdot','wdot','Tw']
quantities = ['humidity','water','air','vapor','velocity','airT1','airT2','waterT','pressure']
qlabels = ['Relative Humidity','Water Mass','Air Flow Rate','Vapor Flow Rate','Velocity (m/s)',
'Air Temp (Region)','Air Temp (Des.)','Water Temp (Des.)','pressure']
area = drips.W*drips.H
volume = area*drips.L
if __name__ == "__main__":
# test.runTests()
data = readValidationFile('data/drips/drips.csv')
# startHumidity = 0.75
# finalHumidity = 0.75
# lagTime = 100.0
for i in range(len(data['time'])):
data['time'][i] *= 60.
for i in range(len(data['inletT'])):
data['inletT'][i] = (data['inletT'][i] -32.)/1.8
data['outletT'][i] = (data['outletT'][i] -32.)/1.8
humidityFunc = interp1d(data['time'],data['inletRH'])
temperatureFunc = interp1d(data['time'],data['inletT'])
humidityFuncOut = interp1d(data['time'],data['outletRH'])
temperatureFuncOut = interp1d(data['time'],data['outletT'])
temperature = data['inletT'][0] # degreees C
pressure = 101325 # Pa
velocity = 1.39 # m/s
# humidity = startHumidity # fraction
humidity = data['inletRH'][0]*0.01
numRegions = 1
finalTime = data['time'][-1]
drips.setAdsorptionHalflife(60*60)
nSteps = int(finalTime)/60
weightFraction = drips.weightFraction(humidity,pressure,temperature)
density = drips.density(weightFraction,pressure,temperature)
inletMassFlowRate = area*density*velocity
init = {}
# initialize everything
init['n'] = numRegions
init['mw'] = np.ones(init['n']+1)*0.
init['airFlowRate'] = np.ones(init['n']+1)*inletMassFlowRate
init['airT1'] = np.ones(init['n']+1)*temperature
init['airT2'] = np.ones(init['n']+1)*temperature
init['vaporFlowRate'] = np.ones(init['n']+1)*weightFraction*inletMassFlowRate
init['waterT'] = np.ones(init['n']+1)*temperature
init['waterFlowRate'] = np.ones(init['n']+1)*0.
init['pressure'] = np.ones(init['n']+1)*pressure
init['dt'] = finalTime/nSteps
init['airInterior'] = 24
# initialize solution to plot
solution = {}
for v in quantities:
solution[v] = np.zeros([nSteps+1,init['n']+1])
solution['velocity'][0,:] = np.ones(init['n']+1)*velocity
solution['humidity'][0,:] = np.ones(init['n']+1)*humidity
solution['air'][0,:] = init['airFlowRate']
solution['vapor'][0,:] = init['vaporFlowRate']
solution['water'][0,:] = init['mw']
solution['airT1'][0,:] = init['airT1']
solution['airT2'][0,:] = init['airT2']
solution['waterT'][0,:] = init['waterT']
solution['pressure'][0,:] = init['pressure']
solution['velocity'][:,0] = np.ones(nSteps+1)*velocity
solution['humidity'][:,0] = np.ones(nSteps+1)*humidity
solution['air'][:,0] = np.ones(nSteps+1)*init['airFlowRate'][0]
solution['vapor'][:,0] = np.ones(nSteps+1)*init['vaporFlowRate'][0]
solution['water'][:,0] = np.ones(nSteps+1)*init['mw'][0]
solution['airT1'][:,0] = np.ones(nSteps+1)*init['airT1'][0]
solution['airT2'][:,0] = np.ones(nSteps+1)*init['airT2'][0]
solution['waterT'][:,0] = np.ones(nSteps+1)*init['waterT'][0]
solution['pressure'][:,0] = np.ones(nSteps+1)*init['pressure'][0]
# start stepping
for i in range(1,nSteps+1):
results = drips.solve(init)
time = init['dt']*i
for j in range(1,init['n']+1):
T = results['Ta2'][j-1]
W = results['mvdot'][j-1]/results['mdot'][j-1]
init['mw'][j] = init['mw'][j] + init['dt']*(results['mwdot'][j-1])
solution['humidity'][i,j] = drips.relHumidity(pressure,W,T)
density = drips.density(humidity,pressure,T)
solution['pressure'][i,j] = pressure
solution['velocity'][i,j] = results['mdot'][j-1]/(density*area)
solution['air'][i,j] = results['mdot'][j-1]
solution['vapor'][i,j] = results['mvdot'][j-1]
solution['water'][i,j] = init['mw'][j]
solution['airT1'][i,j] = results['Ta1'][j-1]
solution['airT2'][i,j] = results['Ta2'][j-1]
solution['waterT'][i,j] = results['Tw'][j-1]
init['airFlowRate'][j] = results['mdot'][j-1]
init['vaporFlowRate'][j] = results['mvdot'][j-1]
init['waterFlowRate'][j] = results['mwdot'][j-1]
init['airT1'][j] = results['Ta1'][j-1]
init['airT2'][j] = results['Ta2'][j-1]
init['waterT'][j] = results['Tw'][j-1]
temperature = temperatureFunc(time)
humidity = humidityFunc(time)*0.01
if( i % 100 == 0 ):
print time,humidity
weightFraction = drips.weightFraction(humidity,pressure,temperature)
density = drips.density(weightFraction,pressure,temperature)
inletMassFlowRate = area*density*velocity
init['airFlowRate'][0] = inletMassFlowRate
init['vaporFlowRate'][0] = weightFraction*inletMassFlowRate
init['airT1'][0] = temperature
solution['humidity'][i,0] = humidity
solution['vapor'][i,0] = init['vaporFlowRate'][0]
solution['air'][i,0] = inletMassFlowRate
solution['airT1'][i,0] = temperature
fig = plt.figure()
plt.gcf().set_size_inches(15,8)
timesteps = np.arange(nSteps+1)*init['dt']
for i in range(8):
plt.subplot(2,4,i+1)
for j in range(init['n']+1):
plt.plot(timesteps,solution[quantities[i]][:,j],'-',linewidth=2.0,
markersize=10,label=str(j))
plt.title(qlabels[i])
plt.xlabel('time (s)')
plt.xlim([0,finalTime])
plt.ticklabel_format(useOffset=False)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
if(quantities[i] is 'humidity'):
plt.ylim([0,max(data['inletRH'])])
plt.legend(loc=0)
plt.tight_layout()
plt.show()
fig = plt.figure()
plt.gcf().set_size_inches(8,4)
timesteps = np.arange(nSteps+1)*init['dt']
plt.subplot(1,2,1)
plt.plot(np.array(data['time'])/60.,data['inletRH'],'o',linewidth=2.0,markersize=5,label='inlet')
plt.plot(np.array(data['time'])/60.,data['outletRH'],'o',linewidth=2.0,markersize=5,label='expt out')
plt.plot(timesteps/60,solution['humidity'][:,1]*100.,'-',linewidth=2.0,markersize=10,label='model out')
plt.title('Relative Humidity (%)')
plt.xlabel('time (mins)')
plt.xlim([0,finalTime/60])
plt.ticklabel_format(useOffset=False)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.legend(loc=0)
plt.subplot(1,2,2)
plt.plot(np.array(data['time'])/60.,data['inletT'],'o',linewidth=2.0,markersize=5,label='inlet')
plt.plot(np.array(data['time'])/60.,data['outletT'],'o',linewidth=2.0,markersize=5,label='expt out')
plt.plot(timesteps/60,solution['airT1'][:,1],'-',linewidth=2.0,markersize=2,label='model out')
plt.title('airTemperature (C)')
plt.xlabel('time (mins)')
plt.xlim([0,finalTime/60])
plt.ticklabel_format(useOffset=False)
plt.ticklabel_format(axis='y', style='sci', scilimits=(-2,2))
plt.tight_layout()
plt.show()