Skip to content

Latest commit

 

History

History
81 lines (67 loc) · 4.33 KB

diginetica.md

File metadata and controls

81 lines (67 loc) · 4.33 KB

Experimental Setting

Dataset: diginetica-not-merged

Filtering: Remove users and items with less than 5 interactions

Evaluation: leave one out, full sort

Metrics: Recall@10, NGCG@10, MRR@10, Hit@10, Precision@10

Properties:

# dataset config
field_separator: "\t"
seq_separator: " "
USER_ID_FIELD: session_id
ITEM_ID_FIELD: item_id
TIME_FIELD: timestamp
NEG_PREFIX: neg_
ITEM_LIST_LENGTH_FIELD: item_length
LIST_SUFFIX: _list
MAX_ITEM_LIST_LENGTH: 20
POSITION_FIELD: position_id
load_col:
  inter: [session_id, item_id, timestamp]
user_inter_num_interval: "[5,inf)"
item_inter_num_interval: "[5,inf)"

# training and evaluation
epochs: 500
train_batch_size: 4096
eval_batch_size: 2000
valid_metric: MRR@10
eval_args:
  split: {'LS':"valid_and_test"}
  mode: full
  order: TO
train_neg_sample_args: ~

For fairness, we restrict users' and items' embedding dimension as following. Please adjust the name of the corresponding args of different models.

embedding_size: 64

Dataset Statistics

Dataset #Users #Items #Interactions Sparsity
diginetica 72,014 29,454 580,490 99.97%

Evaluation Results

Method Recall@10 MRR@10 NDCG@10 Hit@10 Precision@10
GRU4Rec 0.3691 0.1632 0.2114 0.3691 0.0369
NARM 0.3801 0.1695 0.2188 0.3801 0.0380
SASRec 0.4144 0.1857 0.2393 0.4144 0.0414
SR-GNN 0.3881 0.1754 0.2253 0.3881 0.0388
GC-SAN 0.4127 0.1881 0.2408 0.4127 0.0413
NISER+ 0.4144 0.1904 0.2430 0.4144 0.0414
LESSR 0.3964 0.1763 0.2279 0.3964 0.0396
TAGNN 0.3894 0.1763 0.2263 0.3894 0.0389
GCE-GNN 0.4284 0.1961 0.2507 0.4284 0.0428
SGNN-HN 0.4183 0.1877 0.2418 0.4183 0.0418

Hyper-parameters

Best hyper-parameters Tuning range
GRU4Rec learning_rate=0.01
hidden_size=128
dropout_prob=0.3
num_layers=1
learning_rate in [1e-2, 1e-3, 3e-3]
num_layers in [1, 2, 3]
hidden_size in [128]
dropout_prob in [0.1, 0.2, 0.3]
SASRec learning_rate=0.001
n_layers=2
attn_dropout_prob=0.2
hidden_dropout_prob=0.2
learning_rate in [0.001, 0.0001]
n_layers in [1, 2]
hidden_dropout_prob in [0.2, 0.5]
attn_dropout_prob in [0.2, 0.5]
NARM learning_rate=0.001
hidden_size=128
n_layers=1
dropout_probs=[0.25, 0.5]
learning_rate in [0.001, 0.01, 0.03]
hidden_size in [128]
n_layers in [1, 2]
dropout_probs in ['[0.25,0.5]', '[0.2,0.2]', '[0.1,0.2]']
SR-GNN learning_rate=0.001
step=1
learning_rate in [0.01, 0.001, 0.0001]
step in [1, 2]
GC-SAN learning_rate=0.001
step=1
learning_rate in [0.01, 0.001, 0.0001]
step in [1, 2]
NISER+ learning_rate=0.001
sigma=16
learning_rate in [0.01, 0.001, 0.003]
sigma in [10, 16, 20]
LESSR learning_rate=0.001
n_layers=4
learning_rate in [0.01, 0.001, 0.003]
n_layers in [2, 4]
TAGNN learning_rate=0.001 learning_rate in [0.01, 0.001, 0.003]
train_batch_size=512
GCE-GNN learning_rate=0.001
dropout_global=0.5
learning_rate in [0.01, 0.001, 0.003]
dropout_global in [0.2, 0.5]
SGNN-HN learning_rate=0.003
scale=12
step=2
learning_rate in [0.01, 0.001, 0.003]
scale in [12, 16, 20]
step in [2, 4, 6]