-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTmain.c
741 lines (638 loc) · 26 KB
/
Tmain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
//#############################################################################
//
// File: Example_F2802xCpuTimer.c
//
// Title: F2802x CPU Timer Example
//
//! \addtogroup example_list
//! <h1>CPU Timer</h1>
//!
//! This example configures CPU Timer0, 1, & 2 and increments
//! a counter each time the timer asserts an interrupt.
//!
//! Watch Variables:
//! - timer0IntCount
//! - timer1IntCount
//! - timer2IntCount
//
//#############################################################################
// $TI Release: F2802x Support Library v3.02.00.00 $
// $Release Date: Sun Mar 25 13:23:09 CDT 2018 $
// $Copyright:
// Copyright (C) 2009-2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//#############################################################################
//
// Included Files
//
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "common/include/clk.h"
#include "common/include/flash.h"
#include "common/include/gpio.h"
#include "common/include/pie.h"
#include "common/include/pll.h"
#include "common/include/timer.h"
#include "common/include/wdog.h"
#include "i2ca.h"
#include "user.h"
#include "uart.h"
#include "printf.h"
#include "ringBuffer.h"
//
// Function Prototypes
//
//__interrupt void cpu_timer0_isr(void);
__interrupt void cpu_timer1_isr(void);
__interrupt void cpu_timer2_isr(void);
__interrupt void cpu_timer0_isr(void);
__interrupt void adc_isr(void);
__interrupt void hall_a_isr(void);
__interrupt void hall_b_isr(void);
__interrupt void hall_c_isr(void);
__interrupt void sciaTxIsr(void);
void updatePWMState(volatile struct EPWM_REGS *pwmReg, pwm_state CSFA, pwm_state CSFB);
void setDutyCycle(uint8_t dutyCycle);
void initPWM(void);
void initGPIO(void);
void initADC(void);
void itoa(char *buf, int data);
//
// Globals
//
//unsigned long Xint1Count;
//unsigned long Xint2Count;
//unsigned long Xint3Count;
//unsigned long adcIntCount = 0;
int length = 0;
char buf[45];
CLK_Handle myClk;
ADC_Handle myAdc;
FLASH_Handle myFlash;
GPIO_Handle myGpio;
PIE_Handle myPie;
TIMER_Handle myTimer0, myTimer1;
PWM_Handle myPwm1, myPwm2, myPwm3;
SCI_Handle mySci;
CONTROL_Obj Control;
CONTROL_Obj *ControlPtr = &Control;
uint8_t dutyCycle = 0;
uint16_t CMP_GLOBAL;
//
// Main
//
void main(void)
{
CPU_Handle myCpu;
PLL_Handle myPll;
WDOG_Handle myWDog;
//
// Initialize all the handles needed for this application
//
myAdc = ADC_init((void *)ADC_BASE_ADDR, sizeof(ADC_Obj));
myClk = CLK_init((void *)CLK_BASE_ADDR, sizeof(CLK_Obj));
myCpu = CPU_init((void *)NULL, sizeof(CPU_Obj));
myFlash = FLASH_init((void *)FLASH_BASE_ADDR, sizeof(FLASH_Obj));
myGpio = GPIO_init((void *)GPIO_BASE_ADDR, sizeof(GPIO_Obj));
myPie = PIE_init((void *)PIE_BASE_ADDR, sizeof(PIE_Obj));
myPll = PLL_init((void *)PLL_BASE_ADDR, sizeof(PLL_Obj));
myTimer0 = TIMER_init((void *)TIMER0_BASE_ADDR, sizeof(TIMER_Obj));
myTimer1 = TIMER_init((void *)TIMER1_BASE_ADDR, sizeof(TIMER_Obj));
myWDog = WDOG_init((void *)WDOG_BASE_ADDR, sizeof(WDOG_Obj));
myPwm1 = PWM_init((void *)PWM_ePWM1_BASE_ADDR, sizeof(PWM_Obj));
myPwm2 = PWM_init((void *)PWM_ePWM2_BASE_ADDR, sizeof(PWM_Obj));
myPwm3 = PWM_init((void *)PWM_ePWM3_BASE_ADDR, sizeof(PWM_Obj));
mySci = SCI_init((void *)SCIA_BASE_ADDR, sizeof(SCI_Obj));
/*
* Initialize the Main Control Object.
*/
initControl(ControlPtr);
//
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the f2802x_SysCtrl.c file.
//
//InitSysCtrl();
//
// Perform basic system initialization
//
WDOG_disable(myWDog);
CLK_enableAdcClock(myClk);
(*Device_cal)();
//
// Select the internal oscillator 1 as the clock source
//
CLK_setOscSrc(myClk, CLK_OscSrc_Internal);
//
// Setup the PLL for x12 /2 which will yield 60Mhz = 10Mhz * 12 / 2
//
PLL_setup(myPll, PLL_Multiplier_12, PLL_DivideSelect_ClkIn_by_2);
//
// Disable the PIE and all interrupts
//
PIE_disable(myPie);
PIE_disableAllInts(myPie);
CPU_disableGlobalInts(myCpu);
CPU_clearIntFlags(myCpu);
//
// Step 2. Initialize GPIO:
// This example function is found in the f2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
//
//InitGpio(); // Skipped for this example
//
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
//
//DINT;
//
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the f2802x_PieCtrl.c file.
//
//InitPieCtrl();
//
// Disable CPU interrupts and clear all CPU interrupt flags:
//
//IER = 0x0000;
//IFR = 0x0000;
//
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in f2802x_DefaultIsr.c.
// This function is found in f2802x_PieVect.c.
//
//InitPieVectTable();
PIE_setDebugIntVectorTable(myPie);
PIE_enable(myPie);
//
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
//
EALLOW; // This is needed to write to EALLOW protected registers
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_1, PIE_SubGroupNumber_7,
(intVec_t)&cpu_timer0_isr);
PIE_registerSystemIntHandler(myPie, PIE_SystemInterrupts_TINT1,
(intVec_t)&cpu_timer1_isr);
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_10, PIE_SubGroupNumber_1,
(intVec_t)&adc_isr);
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_1, PIE_SubGroupNumber_4,
(intVec_t)&hall_a_isr);
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_1, PIE_SubGroupNumber_5,
(intVec_t)&hall_b_isr);
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_12, PIE_SubGroupNumber_1,
(intVec_t)&hall_c_isr);
PIE_registerPieIntHandler(myPie, PIE_GroupNumber_9, PIE_SubGroupNumber_2,
(intVec_t)&sciaTxIsr);
PIE_enableInt(myPie, PIE_GroupNumber_1, PIE_InterruptSource_XINT_1);
PIE_enableInt(myPie, PIE_GroupNumber_1, PIE_InterruptSource_XINT_2);
PIE_enableInt(myPie, PIE_GroupNumber_12, PIE_InterruptSource_XINT_3);
//PIE_enableInt(myPie, PIE_GroupNumber_9, PIE_InterruptSource_SCIARX);
PIE_enableInt(myPie, PIE_GroupNumber_9, PIE_InterruptSource_SCIATX);
PIE_enableInt(myPie, PIE_GroupNumber_1, PIE_InterruptSource_TIMER_0);
EDIS; // This is needed to disable write to EALLOW protected registers
#ifdef _FLASH
//
// Copy time critical code and Flash setup code to RAM
// This includes the following ISR functions: EPwm1_timer_isr(),
// EPwm2_timer_isr() and FLASH_setup();
// The RamfuncsLoadStart, RamfuncsLoadSize, and RamfuncsRunStart
// symbols are created by the linker. Refer to the F228027.cmd file.
//
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);
//
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
//
FLASH_setup(myFlash);
#endif
//
// Step 4. Initialize the Device Peripheral. This function can be
// found in f2802x_CpuTimers.c
//
//InitCpuTimers(); // For this example, only initialize the Cpu Timers
TIMER_stop(myTimer0);
TIMER_stop(myTimer1);
initGPIO();
//
// Configure XINT1
//
PIE_setExtIntPolarity(myPie, CPU_ExtIntNumber_1, PIE_ExtIntPolarity_RisingAndFallingEdge);
PIE_setExtIntPolarity(myPie, CPU_ExtIntNumber_2, PIE_ExtIntPolarity_RisingAndFallingEdge);
PIE_setExtIntPolarity(myPie, CPU_ExtIntNumber_3, PIE_ExtIntPolarity_RisingAndFallingEdge);
//
// Enable XINT1
//
PIE_enableExtInt(myPie, CPU_ExtIntNumber_1);
PIE_enableExtInt(myPie, CPU_ExtIntNumber_2);
PIE_enableExtInt(myPie, CPU_ExtIntNumber_3);
#if (CPU_FRQ_60MHZ)
//
// Configure CPU-Timer 0, 1, and 2 to interrupt every second:
// 60MHz CPU Freq, 1 second Period (in uSeconds)
//
//ConfigCpuTimer(&CpuTimer0, 60, 1000000);
TIMER_setPeriod(myTimer0, 60 * 1000000);
//ConfigCpuTimer(&CpuTimer1, 60, 1000000);
TIMER_setPeriod(myTimer1, 60 * 1000000);
//ConfigCpuTimer(&CpuTimer2, 60, 1000000);
#endif
#if (CPU_FRQ_40MHZ)
//
// Configure CPU-Timer 0, 1, and 2 to interrupt every second:
// 40MHz CPU Freq, 1 second Period (in uSeconds)
//
//ConfigCpuTimer(&CpuTimer0, 40, 1000000);
TIMER_setPeriod(myTimer0, 40 * 1000000);
//ConfigCpuTimer(&CpuTimer1, 40, 1000000);
TIMER_setPeriod(myTimer1, 40 * 1000000);
//ConfigCpuTimer(&CpuTimer2, 40, 1000000);
TIMER_setPeriod(myTimer2, 40 * 1000000);
#endif
TIMER_setPreScaler(myTimer0, 0); // No prescaler
TIMER_reload(myTimer0);
TIMER_setEmulationMode(myTimer0,
TIMER_EmulationMode_StopAtZero);
TIMER_enableInt(myTimer0);
TIMER_setPreScaler(myTimer1, 0);
TIMER_reload(myTimer1);
TIMER_setEmulationMode(myTimer1,
TIMER_EmulationMode_StopAtZero);
TIMER_enableInt(myTimer1);
//
// To ensure precise timing, use write-only instructions to write to the
// entire register. Therefore, if any of the configuration bits are changed
// in ConfigCpuTimer and InitCpuTimers (in f2802x_CpuTimers.h), the
// below settings must also be updated.
//
//
// Use write-only instruction to set TSS bit = 0
//
//CpuTimer0Regs.TCR.all = 0x4001;
//TIMER_start(myTimer0);
//
// Use write-only instruction to set TSS bit = 0
//
//CpuTimer1Regs.TCR.all = 0x4001;
TIMER_start(myTimer1);
TIMER_start(myTimer0);
//
// Use write-only instruction to set TSS bit = 0
//
//CpuTimer2Regs.TCR.all = 0x4001;
//TIMER_start(myTimer2);
//
// Step 5. User specific code, enable interrupts:
//
//
// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13
// which is connected to CPU-Timer 1, CPU int 9 which is connected to SCITX int and CPU int 14, which is connected
// to CPU-Timer 2
//
CPU_enableInt(myCpu, CPU_IntNumber_13);
CPU_enableInt(myCpu, CPU_IntNumber_10);
CPU_enableInt(myCpu, CPU_IntNumber_1);
CPU_enableInt(myCpu, CPU_IntNumber_12);
CPU_enableInt(myCpu, CPU_IntNumber_9);
int tempIER = CPU_IntNumber_1 | CPU_IntNumber_9 | CPU_IntNumber_10 | CPU_IntNumber_12;
IER &= tempIER;
//CPU_enableInt(myCpu, CPU_IntNumber_14);
//
// Enable TINT0 in the PIE: Group 1 interrupt 7
//
PIE_enableTimer0Int(myPie);
//
// Enable global Interrupts and higher priority real-time debug events
//
CPU_enableGlobalInts(myCpu); // Enable Global interrupt INTM
CPU_enableDebugInt(myCpu); // Enable Global realtime interrupt DBGM
//
// Step 6. IDLE loop. Just sit and loop forever (optional)
//
CLK_disableTbClockSync(myClk);
initPWM();
CLK_enableTbClockSync(myClk);
initADC();
i2ca_init();
scia_init(); // Initialize SCI
scia_msg("Hello World!\n\0");
initHallStates(myGpio, ControlPtr, GPIO_Number_12, GPIO_Number_6, GPIO_Number_7);
commutateMotor(ControlPtr);
for(;;) {
length = snprintf(buf, sizeof(buf), "{\"RPM\": %f, \"Battery\": %f}\n\r", 25.2, ControlPtr->battery.percBat);
if (RING_BUFFER_SIZE - ring_buffer_num_items(&ControlPtr->ringBuf) > length){ // Check if there's enough room in buffer for new string
ring_buffer_queue_arr(&(ControlPtr->ringBuf), buf, length);
}
if (ControlPtr->hallErr == TRUE) GPIO_setHigh(myGpio, GPIO_Number_19); // Turn ON error led
else GPIO_setLow(myGpio, GPIO_Number_19); // Turn OFF error led
if (ControlPtr->state == BRAKE){
updatePWMState(&EPwm1Regs, LOW, HIGH); // Phase A
updatePWMState(&EPwm2Regs, LOW, HIGH); // Phase B
updatePWMState(&EPwm3Regs, LOW, HIGH); // Phase C
} else if (ControlPtr->state == RUN){
if (ControlPtr->speedCalc.speedUpdateReady == TRUE){
double periodSecs, freqHz;
unsigned long periodCycles;
periodCycles = (ControlPtr->speedCalc.timerPeriod - ControlPtr->speedCalc.timerVal); // Electrical rotation period in seconds
periodSecs = (double) periodCycles/(ControlPtr->speedCalc.timerPeriod);
freqHz = 1/periodSecs;
ControlPtr->speedCalc.rpm = freqHz * 60.0/ControlPtr->motor.npp; // Update the speed value
ControlPtr->speedCalc.speedUpdateReady = FALSE;
if (ControlPtr->speedCalc.rpm > MIN_CLOSED_LOOP_RPM){
// dutyCycle = updatePI(ControlPtr);
// setDutyCycle(dutyCycle);
}
}
} else if (ControlPtr->state == COAST){
updatePWMState(&EPwm1Regs, LOW, LOW); // Phase A
updatePWMState(&EPwm2Regs, LOW, LOW); // Phase B
updatePWMState(&EPwm3Regs, LOW, LOW); // Phase C
}
}
}
void initGPIO(void){
// Set GPIO28 as RX and GPIO29 as TX for SCIA
GPIO_setPullUp(myGpio, GPIO_Number_28, GPIO_PullUp_Enable);
GPIO_setPullUp(myGpio, GPIO_Number_29, GPIO_PullUp_Disable);
GPIO_setMode(myGpio, GPIO_Number_28, GPIO_28_Mode_SCIRXDA);
GPIO_setMode(myGpio, GPIO_Number_29, GPIO_29_Mode_SCITXDA);
// Set GPIO32 as SDA and GPIO33 as SCL for I2C communication with fuel gauge
GPIO_setMode(myGpio, GPIO_Number_32, GPIO_32_Mode_SDAA);
GPIO_setMode(myGpio, GPIO_Number_33, GPIO_33_Mode_SCLA);
GPIO_setMode(myGpio, GPIO_Number_19, GPIO_19_Mode_GeneralPurpose);
GPIO_setDirection(myGpio, GPIO_Number_19, GPIO_Direction_Output);
GPIO_setMode(myGpio, GPIO_Number_16, GPIO_16_Mode_GeneralPurpose);
GPIO_setDirection(myGpio, GPIO_Number_16, GPIO_Direction_Output);
GPIO_setHigh(myGpio, GPIO_Number_16); // Enable linear regulator for gate drivers
// Set Up GPIO12 (Hall Sensor A) as input.
GPIO_setMode(myGpio, GPIO_Number_12, GPIO_12_Mode_GeneralPurpose);
GPIO_setDirection(myGpio, GPIO_Number_12, GPIO_Direction_Input);
GPIO_setQualification(myGpio, GPIO_Number_12, GPIO_Qual_Sample_6);
GPIO_setQualificationPeriod(myGpio, GPIO_Number_12, 0xFF); // 60MHz/(2*30) = 1uS
// Set Up GPIO6 (Hall Sensor B) as input
GPIO_setMode(myGpio, GPIO_Number_6, GPIO_6_Mode_GeneralPurpose);
GPIO_setDirection(myGpio, GPIO_Number_6, GPIO_Direction_Input);
GPIO_setQualification(myGpio, GPIO_Number_6, GPIO_Qual_Sample_6);
GPIO_setQualificationPeriod(myGpio, GPIO_Number_6, 0xFF); // 60MHz/(2*30) = 1uS
// Set Up GPIO7 (Hall Sensor C) as input.
GPIO_setMode(myGpio, GPIO_Number_7, GPIO_7_Mode_GeneralPurpose);
GPIO_setDirection(myGpio, GPIO_Number_7, GPIO_Direction_Input);
GPIO_setQualification(myGpio, GPIO_Number_7, GPIO_Qual_Sample_6);
GPIO_setQualificationPeriod(myGpio, GPIO_Number_7, 0xFF); // 60MHz/(2*30) = 1uS
GPIO_setPullUp(myGpio, GPIO_Number_12, GPIO_PullUp_Enable);
GPIO_setPullUp(myGpio, GPIO_Number_6, GPIO_PullUp_Enable);
GPIO_setPullUp(myGpio, GPIO_Number_7, GPIO_PullUp_Enable);
//
// GPIO12 is XINT1 (Hall A), GPIO6 is XINT2 (Hall B), GPIO7 is XINT3 (Hall C)
//
GPIO_setExtInt(myGpio, GPIO_Number_12, CPU_ExtIntNumber_1);
GPIO_setExtInt(myGpio, GPIO_Number_6, CPU_ExtIntNumber_2);
GPIO_setExtInt(myGpio, GPIO_Number_7, CPU_ExtIntNumber_3);
//
// Initialize GPIO for PWM
//
GPIO_setPullUp(myGpio, GPIO_Number_0, GPIO_PullUp_Disable);
GPIO_setPullUp(myGpio, GPIO_Number_1, GPIO_PullUp_Disable);
GPIO_setMode(myGpio, GPIO_Number_0, GPIO_0_Mode_EPWM1A);
GPIO_setMode(myGpio, GPIO_Number_1, GPIO_1_Mode_EPWM1B);
GPIO_setPullUp(myGpio, GPIO_Number_2, GPIO_PullUp_Disable);
GPIO_setPullUp(myGpio, GPIO_Number_3, GPIO_PullUp_Disable);
GPIO_setMode(myGpio, GPIO_Number_2, GPIO_2_Mode_EPWM2A);
GPIO_setMode(myGpio, GPIO_Number_3, GPIO_3_Mode_EPWM2B);
GPIO_setPullUp(myGpio, GPIO_Number_4, GPIO_PullUp_Disable);
GPIO_setPullUp(myGpio, GPIO_Number_5, GPIO_PullUp_Disable);
GPIO_setMode(myGpio, GPIO_Number_4, GPIO_4_Mode_EPWM3A);
GPIO_setMode(myGpio, GPIO_Number_5, GPIO_5_Mode_EPWM3B);
}
void initADC(void){
//
// Initialize the ADC
//
ADC_enableBandGap(myAdc);
ADC_enableRefBuffers(myAdc);
ADC_powerUp(myAdc);
ADC_enable(myAdc);
ADC_setVoltRefSrc(myAdc, ADC_VoltageRefSrc_Int);
ADC_setIntPulseGenMode(myAdc, ADC_IntPulseGenMode_Prior);
ADC_enableInt(myAdc, ADC_IntNumber_1);
ADC_setIntMode(myAdc, ADC_IntNumber_1, ADC_IntMode_EOC);
ADC_setIntSrc(myAdc, ADC_IntNumber_1, ADC_IntSrc_EOC0);
ADC_setSocChanNumber (myAdc, ADC_SocNumber_0, ADC_SocChanNumber_B1);
ADC_setSocTrigSrc(myAdc, ADC_SocNumber_0, ADC_SocTrigSrc_CpuTimer_1);
ADC_setSocSampleWindow(myAdc, ADC_SocNumber_0,
ADC_SocSampleWindow_37_cycles);
PIE_enableAdcInt(myPie, ADC_IntNumber_1);
}
void initPWM(void)
{
CLK_enablePwmClock(myClk, PWM_Number_1);
CLK_enablePwmClock(myClk, PWM_Number_2);
CLK_enablePwmClock(myClk, PWM_Number_3);
EPwm1Regs.TBPRD = TBPRD_VALUE; // Period = 2*TBPRD TBCLK counts
EPwm1Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
EPwm1Regs.DBCTL.bit.OUT_MODE = DB_DISABLE; // Disable Dead-band module
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Master module
EPwm1Regs.TBCTL.bit.PRDLD = TB_SHADOW;
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_CTR_ZERO; // Sync down-stream module
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // set actions for EPWM1A
EPwm1Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; // set actions for EPWM1A
EPwm1Regs.AQCTLB.bit.CBD = AQ_CLEAR;
//EPwm1Regs.AQCSFRC.bit.CSFA = 0x0; // PWM still on
//EPwm1Regs.AQCSFRC.bit.CSFA = 0x1; // Use these commands to force PWM outputs low or high
//EPwm1Regs.AQCSFRC.bit.CSFB = 0x2;
// EPWM Module 2 config
EPwm2Regs.TBPRD = TBPRD_VALUE;
EPwm2Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
EPwm2Regs.DBCTL.bit.OUT_MODE = DB_DISABLE; // Disable Dead-band module
EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
EPwm2Regs.TBCTL.bit.PRDLD = TB_SHADOW;
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR; // set actions for EPWM2A
EPwm2Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; // set actions for EPWM1A
EPwm2Regs.AQCTLB.bit.CBD = AQ_CLEAR;
// EPWM Module 3 config
EPwm3Regs.TBPRD = TBPRD_VALUE;
EPwm3Regs.TBPHS.half.TBPHS = 0; // Set Phase register to zero
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Symmetrical mode
EPwm3Regs.DBCTL.bit.OUT_MODE = DB_DISABLE; // Disable Dead-band module
EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; // Slave module
EPwm3Regs.TBCTL.bit.PRDLD = TB_SHADOW;
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // sync flow-through
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; // load on CTR=Zero
EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; // set actions for EPWM3A
EPwm3Regs.AQCTLA.bit.CAD = AQ_SET;
EPwm3Regs.AQCTLB.bit.CBU = AQ_SET; // set actions for EPWM1A
EPwm3Regs.AQCTLB.bit.CBD = AQ_CLEAR;
EPwm1Regs.CMPA.half.CMPA = 300; // adjust duty for output EPWM1A
EPwm1Regs.CMPB = 310; // adjust duty for output EPWM3B
EPwm2Regs.CMPA.half.CMPA = 300; // adjust duty for output EPWM2A
EPwm2Regs.CMPB = 310; // adjust duty for output EPWM3B
EPwm3Regs.CMPA.half.CMPA = 300; // adjust duty for output EPWM3A
EPwm3Regs.CMPB = 310; // adjust duty for output EPWM3B
// Brake the motor to start off
updatePWMState(&EPwm1Regs, LOW, HIGH); // Phase A
updatePWMState(&EPwm2Regs, LOW, HIGH); // Phase B
updatePWMState(&EPwm3Regs, LOW, HIGH); // Phase C
}
__interrupt void
sciaTxIsr(void)
{
char buf, ch;
static parse_state parseState = BUFFER_EMPTY;
if (ring_buffer_dequeue(&(ControlPtr->ringBuf), &buf) == TRUE){
scia_xmit(buf); // Transmit just one byte if there is data in the ring buffer
}
//
// Clear SCI Interrupt flag
//
SCI_clearTxFifoInt(mySci);
//
// Issue PIE ACK
//
PIE_clearInt(myPie, PIE_GroupNumber_9);
return;
}
//
// cpu_timer1_isr -
//
__interrupt void
cpu_timer1_isr(void)
{
/*
* Use this ISR to send out one byte over UART from ring buffer, which is filled in main loop
*/
// ADC SOC should occur when this interrupt fires
}
__interrupt void
cpu_timer0_isr(void)
{
if (TIMER_getStatus(myTimer0) == TIMER_Status_CntIsZero){
ControlPtr->speedCalc.rpm = 0; // Set RPM to 0 and skip RPM calculation
ControlPtr->speedCalc.speedUpdateReady = FALSE;
}
PIE_clearInt(myPie, PIE_GroupNumber_1);
TIMER_clearFlag(myTimer0);
TIMER_stop(myTimer0);
}
//
// adc_isr -
//
__interrupt void
adc_isr(void)
{
unsigned int adc_counts = ADC_readResult(myAdc, ADC_ResultNumber_0);
double result = (double)(adc_counts*ControlPtr->speedCalc.rpmMax)/((1 << NUM_ADC_BITS) - 1);
ControlPtr->speedCalc.rpmRef = result; // Update the command value used by the PI controller
ADC_clearIntFlag(myAdc, ADC_IntNumber_1);
PIE_clearInt(myPie, PIE_GroupNumber_10);
return;
}
//
// hall_a_isr-
//
__interrupt void
hall_a_isr(void)
{
uint32_t gpioVal = GPIO_getData(myGpio, GPIO_Number_12);
updateHall_A(gpioVal, ControlPtr);
checkHallErr(ControlPtr);
commutateMotor(ControlPtr);
//GPIO_toggle(myGpio, GPIO_Number_29);
if (gpioVal == 1){ // Used to get time between rising edge to calculate speed.
//GPIO_setHigh(myGpio, GPIO_Number_29);
} else {
if (myTimer0->TCR & TIMER_TCR_TSS_BITS){ // If timer is stopped, start timer and begin count
//GPIO_setLow(myGpio, GPIO_Number_28);
TIMER_reload(myTimer0);
TIMER_start(myTimer0);
}else {
// GPIO_setHigh(myGpio, GPIO_Number_28);
TIMER_stop(myTimer0);
ControlPtr->speedCalc.timerVal = TIMER_getCount(myTimer0);
ControlPtr->speedCalc.speedUpdateReady = TRUE;
}
//GPIO_setLow(myGpio, GPIO_Number_29);
}
//
// Acknowledge this interrupt to get more from group 1
//
PIE_clearInt(myPie, PIE_GroupNumber_1);
}
//
// hall_b_isr-
//
__interrupt void
hall_b_isr(void)
{
uint32_t gpioVal = GPIO_getData(myGpio, GPIO_Number_6);
updateHall_B(gpioVal, ControlPtr);
checkHallErr(ControlPtr);
commutateMotor(ControlPtr);
//
// Acknowledge this interrupt to get more from group 1
//
PIE_clearInt(myPie, PIE_GroupNumber_1);
}
//
// hall_c_isr -
//
__interrupt void
hall_c_isr(void)
{
uint32_t gpioVal = GPIO_getData(myGpio, GPIO_Number_7);
updateHall_C(gpioVal, ControlPtr);
checkHallErr(ControlPtr);
commutateMotor(ControlPtr);
//
// Acknowledge this interrupt to get more from group 12
//
PIE_clearInt(myPie, PIE_GroupNumber_12);
}
//
// End of File
//