forked from openmc-dev/openmc
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.cpp
1005 lines (885 loc) · 29.4 KB
/
plot.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "openmc/plot.h"
#include <algorithm>
#include <fstream>
#include <sstream>
#include "xtensor/xview.hpp"
#include "openmc/constants.h"
#include "openmc/file_utils.h"
#include "openmc/geometry.h"
#include "openmc/error.h"
#include "openmc/hdf5_interface.h"
#include "openmc/material.h"
#include "openmc/mesh.h"
#include "openmc/message_passing.h"
#include "openmc/output.h"
#include "openmc/particle.h"
#include "openmc/progress_bar.h"
#include "openmc/random_lcg.h"
#include "openmc/settings.h"
#include "openmc/simulation.h"
#include "openmc/string_utils.h"
namespace openmc {
//==============================================================================
// Constants
//==============================================================================
constexpr int PLOT_LEVEL_LOWEST {-1}; //!< lower bound on plot universe level
constexpr int32_t NOT_FOUND {-2};
constexpr int32_t OVERLAP {-3};
IdData::IdData(size_t h_res, size_t v_res)
: data_({v_res, h_res, 2}, NOT_FOUND)
{ }
void
IdData::set_value(size_t y, size_t x, const Particle& p, int level) {
Cell* c = model::cells[p.coord_[level].cell].get();
data_(y,x,0) = c->id_;
if (p.material_ == MATERIAL_VOID) {
data_(y,x,1) = MATERIAL_VOID;
return;
} else if (c->type_ != FILL_UNIVERSE) {
Material* m = model::materials[p.material_].get();
data_(y,x,1) = m->id_;
}
}
void IdData::set_overlap(size_t y, size_t x) {
xt::view(data_, y, x, xt::all()) = OVERLAP;
}
PropertyData::PropertyData(size_t h_res, size_t v_res)
: data_({v_res, h_res, 2}, NOT_FOUND)
{ }
void
PropertyData::set_value(size_t y, size_t x, const Particle& p, int level) {
Cell* c = model::cells[p.coord_[level].cell].get();
data_(y,x,0) = (p.sqrtkT_ * p.sqrtkT_) / K_BOLTZMANN;
if (c->type_ != FILL_UNIVERSE && p.material_ != MATERIAL_VOID) {
Material* m = model::materials[p.material_].get();
data_(y,x,1) = m->density_gpcc_;
}
}
void PropertyData::set_overlap(size_t y, size_t x) {
data_(y, x) = OVERLAP;
}
//==============================================================================
// Global variables
//==============================================================================
namespace model {
std::vector<Plot> plots;
std::unordered_map<int, int> plot_map;
} // namespace model
//==============================================================================
// RUN_PLOT controls the logic for making one or many plots
//==============================================================================
extern "C"
int openmc_plot_geometry()
{
for (auto pl : model::plots) {
std::stringstream ss;
ss << "Processing plot " << pl.id_ << ": "
<< pl.path_plot_ << "...";
write_message(ss.str(), 5);
if (PlotType::slice == pl.type_) {
// create 2D image
create_ppm(pl);
} else if (PlotType::voxel == pl.type_) {
// create voxel file for 3D viewing
create_voxel(pl);
}
}
return 0;
}
void read_plots_xml()
{
// Check if plots.xml exists
std::string filename = settings::path_input + "plots.xml";
if (!file_exists(filename)) {
fatal_error("Plots XML file '" + filename + "' does not exist!");
}
write_message("Reading plot XML file...", 5);
// Parse plots.xml file
pugi::xml_document doc;
doc.load_file(filename.c_str());
pugi::xml_node root = doc.document_element();
for (auto node : root.children("plot")) {
Plot pl(node);
model::plots.push_back(pl);
model::plot_map[pl.id_] = model::plots.size() - 1;
}
}
//==============================================================================
// CREATE_PPM creates an image based on user input from a plots.xml <plot>
// specification in the portable pixmap format (PPM)
//==============================================================================
void create_ppm(Plot pl)
{
size_t width = pl.pixels_[0];
size_t height = pl.pixels_[1];
ImageData data({width, height}, pl.not_found_);
// generate ids for the plot
auto ids = pl.get_map<IdData>();
// assign colors
for (size_t y = 0; y < height; y++) {
for (size_t x = 0; x < width; x++) {
auto id = ids.data_(y, x, pl.color_by_);
// no setting needed if not found
if (id == NOT_FOUND) { continue; }
if (id == OVERLAP) {
data(x,y) = pl.overlap_color_;
continue;
}
if (PlotColorBy::cells == pl.color_by_) {
data(x,y) = pl.colors_[model::cell_map[id]];
} else if (PlotColorBy::mats == pl.color_by_) {
if (id == MATERIAL_VOID) {
data(x,y) = WHITE;
continue;
}
data(x,y) = pl.colors_[model::material_map[id]];
} // color_by if-else
} // x for loop
} // y for loop
// draw mesh lines if present
if (pl.index_meshlines_mesh_ >= 0) {draw_mesh_lines(pl, data);}
// write ppm data to file
output_ppm(pl, data);
}
void
Plot::set_id(pugi::xml_node plot_node)
{
// Copy data into plots
if (check_for_node(plot_node, "id")) {
id_ = std::stoi(get_node_value(plot_node, "id"));
} else {
fatal_error("Must specify plot id in plots XML file.");
}
// Check to make sure 'id' hasn't been used
if (model::plot_map.find(id_) != model::plot_map.end()) {
std::stringstream err_msg;
err_msg << "Two or more plots use the same unique ID: " << id_;
fatal_error(err_msg.str());
}
}
void
Plot::set_type(pugi::xml_node plot_node)
{
// Copy plot type
// Default is slice
type_ = PlotType::slice;
// check type specified on plot node
if (check_for_node(plot_node, "type")) {
std::string type_str = get_node_value(plot_node, "type", true);
// set type using node value
if (type_str == "slice") {
type_ = PlotType::slice;
}
else if (type_str == "voxel") {
type_ = PlotType::voxel;
} else {
// if we're here, something is wrong
std::stringstream err_msg;
err_msg << "Unsupported plot type '" << type_str
<< "' in plot " << id_;
fatal_error(err_msg.str());
}
}
}
void
Plot::set_output_path(pugi::xml_node plot_node)
{
// Set output file path
std::stringstream filename;
if (check_for_node(plot_node, "filename")) {
filename << get_node_value(plot_node, "filename");
} else {
filename << "plot_" << id_;
}
// add appropriate file extension to name
switch(type_) {
case PlotType::slice:
filename << ".ppm";
break;
case PlotType::voxel:
filename << ".h5";
break;
}
path_plot_ = filename.str();
// Copy plot pixel size
std::vector<int> pxls = get_node_array<int>(plot_node, "pixels");
if (PlotType::slice == type_) {
if (pxls.size() == 2) {
pixels_[0] = pxls[0];
pixels_[1] = pxls[1];
} else {
std::stringstream err_msg;
err_msg << "<pixels> must be length 2 in slice plot "
<< id_;
fatal_error(err_msg.str());
}
} else if (PlotType::voxel == type_) {
if (pxls.size() == 3) {
pixels_[0] = pxls[0];
pixels_[1] = pxls[1];
pixels_[2] = pxls[2];
} else {
std::stringstream err_msg;
err_msg << "<pixels> must be length 3 in voxel plot "
<< id_;
fatal_error(err_msg.str());
}
}
}
void
Plot::set_bg_color(pugi::xml_node plot_node)
{
// Copy plot background color
if (check_for_node(plot_node, "background")) {
std::vector<int> bg_rgb = get_node_array<int>(plot_node, "background");
if (PlotType::voxel == type_) {
if (mpi::master) {
std::stringstream err_msg;
err_msg << "Background color ignored in voxel plot "
<< id_;
warning(err_msg.str());
}
}
if (bg_rgb.size() == 3) {
not_found_ = bg_rgb;
} else {
std::stringstream err_msg;
err_msg << "Bad background RGB in plot "
<< id_;
fatal_error(err_msg);
}
}
}
void
Plot::set_basis(pugi::xml_node plot_node)
{
// Copy plot basis
if (PlotType::slice == type_) {
std::string pl_basis = "xy";
if (check_for_node(plot_node, "basis")) {
pl_basis = get_node_value(plot_node, "basis", true);
}
if ("xy" == pl_basis) {
basis_ = PlotBasis::xy;
} else if ("xz" == pl_basis) {
basis_ = PlotBasis::xz;
} else if ("yz" == pl_basis) {
basis_ = PlotBasis::yz;
} else {
std::stringstream err_msg;
err_msg << "Unsupported plot basis '" << pl_basis
<< "' in plot " << id_;
fatal_error(err_msg);
}
}
}
void
Plot::set_origin(pugi::xml_node plot_node)
{
// Copy plotting origin
auto pl_origin = get_node_array<double>(plot_node, "origin");
if (pl_origin.size() == 3) {
origin_ = pl_origin;
} else {
std::stringstream err_msg;
err_msg << "Origin must be length 3 in plot "
<< id_;
fatal_error(err_msg);
}
}
void
Plot::set_width(pugi::xml_node plot_node)
{
// Copy plotting width
std::vector<double> pl_width = get_node_array<double>(plot_node, "width");
if (PlotType::slice == type_) {
if (pl_width.size() == 2) {
width_.x = pl_width[0];
width_.y = pl_width[1];
} else {
std::stringstream err_msg;
err_msg << "<width> must be length 2 in slice plot "
<< id_;
fatal_error(err_msg);
}
} else if (PlotType::voxel == type_) {
if (pl_width.size() == 3) {
pl_width = get_node_array<double>(plot_node, "width");
width_ = pl_width;
} else {
std::stringstream err_msg;
err_msg << "<width> must be length 3 in voxel plot "
<< id_;
fatal_error(err_msg);
}
}
}
void
Plot::set_universe(pugi::xml_node plot_node)
{
// Copy plot universe level
if (check_for_node(plot_node, "level")) {
level_ = std::stoi(get_node_value(plot_node, "level"));
if (level_ < 0) {
std::stringstream err_msg;
err_msg << "Bad universe level in plot " << id_;
fatal_error(err_msg);
}
} else {
level_ = PLOT_LEVEL_LOWEST;
}
}
void
Plot::set_default_colors(pugi::xml_node plot_node)
{
// Copy plot color type and initialize all colors randomly
std::string pl_color_by = "cell";
if (check_for_node(plot_node, "color_by")) {
pl_color_by = get_node_value(plot_node, "color_by", true);
}
if ("cell" == pl_color_by) {
color_by_ = PlotColorBy::cells;
colors_.resize(model::cells.size());
} else if("material" == pl_color_by) {
color_by_ = PlotColorBy::mats;
colors_.resize(model::materials.size());
} else {
std::stringstream err_msg;
err_msg << "Unsupported plot color type '" << pl_color_by
<< "' in plot " << id_;
fatal_error(err_msg);
}
for (auto& c : colors_) {
c = random_color();
// make sure we don't interfere with some default colors
while (c == RED || c == WHITE) {
c = random_color();
}
}
}
void
Plot::set_user_colors(pugi::xml_node plot_node)
{
if (!plot_node.select_nodes("color").empty() && PlotType::voxel == type_) {
if (mpi::master) {
std::stringstream err_msg;
err_msg << "Color specifications ignored in voxel plot "
<< id_;
warning(err_msg);
}
}
for (auto cn : plot_node.children("color")) {
// Make sure 3 values are specified for RGB
std::vector<int> user_rgb = get_node_array<int>(cn, "rgb");
if (user_rgb.size() != 3) {
std::stringstream err_msg;
err_msg << "Bad RGB in plot " << id_;
fatal_error(err_msg);
}
// Ensure that there is an id for this color specification
int col_id;
if (check_for_node(cn, "id")) {
col_id = std::stoi(get_node_value(cn, "id"));
} else {
std::stringstream err_msg;
err_msg << "Must specify id for color specification in plot "
<< id_;
fatal_error(err_msg);
}
// Add RGB
if (PlotColorBy::cells == color_by_) {
if (model::cell_map.find(col_id) != model::cell_map.end()) {
col_id = model::cell_map[col_id];
colors_[col_id] = user_rgb;
} else {
std::stringstream err_msg;
err_msg << "Could not find cell " << col_id
<< " specified in plot " << id_;
fatal_error(err_msg);
}
} else if (PlotColorBy::mats == color_by_) {
if (model::material_map.find(col_id) != model::material_map.end()) {
col_id = model::material_map[col_id];
colors_[col_id] = user_rgb;
} else {
std::stringstream err_msg;
err_msg << "Could not find material " << col_id
<< " specified in plot " << id_;
fatal_error(err_msg);
}
}
} // color node loop
}
void
Plot::set_meshlines(pugi::xml_node plot_node)
{
// Deal with meshlines
pugi::xpath_node_set mesh_line_nodes = plot_node.select_nodes("meshlines");
if (!mesh_line_nodes.empty()) {
if (PlotType::voxel == type_) {
std::stringstream msg;
msg << "Meshlines ignored in voxel plot " << id_;
warning(msg);
}
if (mesh_line_nodes.size() == 1) {
// Get first meshline node
pugi::xml_node meshlines_node = mesh_line_nodes[0].node();
// Check mesh type
std::string meshtype;
if (check_for_node(meshlines_node, "meshtype")) {
meshtype = get_node_value(meshlines_node, "meshtype");
} else {
std::stringstream err_msg;
err_msg << "Must specify a meshtype for meshlines specification in plot " << id_;
fatal_error(err_msg);
}
// Ensure that there is a linewidth for this meshlines specification
std::string meshline_width;
if (check_for_node(meshlines_node, "linewidth")) {
meshline_width = get_node_value(meshlines_node, "linewidth");
meshlines_width_ = std::stoi(meshline_width);
} else {
std::stringstream err_msg;
err_msg << "Must specify a linewidth for meshlines specification in plot " << id_;
fatal_error(err_msg);
}
// Check for color
if (check_for_node(meshlines_node, "color")) {
// Check and make sure 3 values are specified for RGB
std::vector<int> ml_rgb = get_node_array<int>(meshlines_node, "color");
if (ml_rgb.size() != 3) {
std::stringstream err_msg;
err_msg << "Bad RGB for meshlines color in plot " << id_;
fatal_error(err_msg);
}
meshlines_color_ = ml_rgb;
}
// Set mesh based on type
if ("ufs" == meshtype) {
if (!simulation::ufs_mesh) {
std::stringstream err_msg;
err_msg << "No UFS mesh for meshlines on plot " << id_;
fatal_error(err_msg);
} else {
for (int i = 0; i < model::meshes.size(); ++i) {
if (const auto* m
= dynamic_cast<const RegularMesh*>(model::meshes[i].get())) {
if (m == simulation::ufs_mesh) {
index_meshlines_mesh_ = i;
}
}
}
if (index_meshlines_mesh_ == -1)
fatal_error("Could not find the UFS mesh for meshlines plot");
}
} else if ("entropy" == meshtype) {
if (!simulation::entropy_mesh) {
std::stringstream err_msg;
err_msg << "No entropy mesh for meshlines on plot " << id_;
fatal_error(err_msg);
} else {
for (int i = 0; i < model::meshes.size(); ++i) {
if (const auto* m
= dynamic_cast<const RegularMesh*>(model::meshes[i].get())) {
if (m == simulation::entropy_mesh) {
index_meshlines_mesh_ = i;
}
}
}
if (index_meshlines_mesh_ == -1)
fatal_error("Could not find the entropy mesh for meshlines plot");
}
} else if ("tally" == meshtype) {
// Ensure that there is a mesh id if the type is tally
int tally_mesh_id;
if (check_for_node(meshlines_node, "id")) {
tally_mesh_id = std::stoi(get_node_value(meshlines_node, "id"));
} else {
std::stringstream err_msg;
err_msg << "Must specify a mesh id for meshlines tally "
<< "mesh specification in plot " << id_;
fatal_error(err_msg);
}
// find the tally index
int idx;
int err = openmc_get_mesh_index(tally_mesh_id, &idx);
if (err != 0) {
std::stringstream err_msg;
err_msg << "Could not find mesh " << tally_mesh_id
<< " specified in meshlines for plot " << id_;
fatal_error(err_msg);
}
index_meshlines_mesh_ = idx;
} else {
std::stringstream err_msg;
err_msg << "Invalid type for meshlines on plot " << id_ ;
fatal_error(err_msg);
}
} else {
std::stringstream err_msg;
err_msg << "Mutliple meshlines specified in plot " << id_;
fatal_error(err_msg);
}
}
}
void
Plot::set_mask(pugi::xml_node plot_node)
{
// Deal with masks
pugi::xpath_node_set mask_nodes = plot_node.select_nodes("mask");
if (!mask_nodes.empty()) {
if (PlotType::voxel == type_) {
if (mpi::master) {
std::stringstream wrn_msg;
wrn_msg << "Mask ignored in voxel plot " << id_;
warning(wrn_msg);
}
}
if (mask_nodes.size() == 1) {
// Get pointer to mask
pugi::xml_node mask_node = mask_nodes[0].node();
// Determine how many components there are and allocate
std::vector<int> iarray = get_node_array<int>(mask_node, "components");
if (iarray.size() == 0) {
std::stringstream err_msg;
err_msg << "Missing <components> in mask of plot " << id_;
fatal_error(err_msg);
}
// First we need to change the user-specified identifiers to indices
// in the cell and material arrays
for (auto& col_id : iarray) {
if (PlotColorBy::cells == color_by_) {
if (model::cell_map.find(col_id) != model::cell_map.end()) {
col_id = model::cell_map[col_id];
}
else {
std::stringstream err_msg;
err_msg << "Could not find cell " << col_id
<< " specified in the mask in plot " << id_;
fatal_error(err_msg);
}
} else if (PlotColorBy::mats == color_by_) {
if (model::material_map.find(col_id) != model::material_map.end()) {
col_id = model::material_map[col_id];
}
else {
std::stringstream err_msg;
err_msg << "Could not find material " << col_id
<< " specified in the mask in plot " << id_;
fatal_error(err_msg);
}
}
}
// Alter colors based on mask information
for (int j = 0; j < colors_.size(); j++) {
if (std::find(iarray.begin(), iarray.end(), j) == iarray.end()) {
if (check_for_node(mask_node, "background")) {
std::vector<int> bg_rgb = get_node_array<int>(mask_node, "background");
colors_[j] = bg_rgb;
} else {
colors_[j] = WHITE;
}
}
}
} else {
std::stringstream err_msg;
err_msg << "Mutliple masks specified in plot " << id_;
fatal_error(err_msg);
}
}
}
void Plot::set_overlap_color(pugi::xml_node plot_node) {
color_overlaps_ = false;
if (check_for_node(plot_node, "show_overlaps")) {
color_overlaps_ = get_node_value_bool(plot_node, "show_overlaps");
// check for custom overlap color
if (check_for_node(plot_node, "overlap_color")) {
if (!color_overlaps_) {
std::stringstream wrn_msg;
wrn_msg << "Overlap color specified in plot " << id_
<< " but overlaps won't be shown.";
warning(wrn_msg);
}
std::vector<int> olap_clr = get_node_array<int>(plot_node, "overlap_color");
if (olap_clr.size() == 3) {
overlap_color_ = olap_clr;
} else {
std::stringstream err_msg;
err_msg << "Bad overlap RGB in plot " << id_;
fatal_error(err_msg);
}
}
}
// make sure we allocate the vector for counting overlap checks if
// they're going to be plotted
if (color_overlaps_ && settings::run_mode == RUN_MODE_PLOTTING) {
settings::check_overlaps = true;
model::overlap_check_count.resize(model::cells.size(), 0);
}
}
Plot::Plot(pugi::xml_node plot_node)
: index_meshlines_mesh_{-1}, overlap_color_{RED}
{
set_id(plot_node);
set_type(plot_node);
set_output_path(plot_node);
set_bg_color(plot_node);
set_basis(plot_node);
set_origin(plot_node);
set_width(plot_node);
set_universe(plot_node);
set_default_colors(plot_node);
set_user_colors(plot_node);
set_meshlines(plot_node);
set_mask(plot_node);
set_overlap_color(plot_node);
} // End Plot constructor
//==============================================================================
// OUTPUT_PPM writes out a previously generated image to a PPM file
//==============================================================================
void output_ppm(Plot pl, const ImageData& data)
{
// Open PPM file for writing
std::string fname = pl.path_plot_;
fname = strtrim(fname);
std::ofstream of;
of.open(fname);
// Write header
of << "P6" << "\n";
of << pl.pixels_[0] << " " << pl.pixels_[1] << "\n";
of << "255" << "\n";
of.close();
of.open(fname, std::ios::binary | std::ios::app);
// Write color for each pixel
for (int y = 0; y < pl.pixels_[1]; y++) {
for (int x = 0; x < pl.pixels_[0]; x++) {
RGBColor rgb = data(x,y);
of << rgb.red << rgb.green << rgb.blue;
}
}
// Close file
// THIS IS HERE TO MATCH FORTRAN VERSION, NOT TECHNICALLY NECESSARY
of << "\n";
of.close();
}
//==============================================================================
// DRAW_MESH_LINES draws mesh line boundaries on an image
//==============================================================================
void draw_mesh_lines(Plot pl, ImageData& data)
{
RGBColor rgb;
rgb = pl.meshlines_color_;
int ax1, ax2;
switch(pl.basis_) {
case PlotBasis::xy :
ax1 = 0;
ax2 = 1;
break;
case PlotBasis::xz :
ax1 = 0;
ax2 = 2;
break;
case PlotBasis::yz :
ax1 = 1;
ax2 = 2;
break;
default:
UNREACHABLE();
}
Position ll_plot {pl.origin_};
Position ur_plot {pl.origin_};
ll_plot[ax1] -= pl.width_[0] / 2.;
ll_plot[ax2] -= pl.width_[1] / 2.;
ur_plot[ax1] += pl.width_[0] / 2.;
ur_plot[ax2] += pl.width_[1] / 2.;
Position width = ur_plot - ll_plot;
// Find the (axis-aligned) lines of the mesh that intersect this plot.
auto axis_lines = model::meshes[pl.index_meshlines_mesh_]
->plot(ll_plot, ur_plot);
// Find the bounds along the second axis (accounting for low-D meshes).
int ax2_min, ax2_max;
if (axis_lines.second.size() > 0) {
double frac = (axis_lines.second.back() - ll_plot[ax2]) / width[ax2];
ax2_min = (1.0 - frac) * pl.pixels_[1];
if (ax2_min < 0) ax2_min = 0;
frac = (axis_lines.second.front() - ll_plot[ax2]) / width[ax2];
ax2_max = (1.0 - frac) * pl.pixels_[1];
if (ax2_max > pl.pixels_[1]) ax2_max = pl.pixels_[1];
} else {
ax2_min = 0;
ax2_max = pl.pixels_[1];
}
// Iterate across the first axis and draw lines.
for (auto ax1_val : axis_lines.first) {
double frac = (ax1_val - ll_plot[ax1]) / width[ax1];
int ax1_ind = frac * pl.pixels_[0];
for (int ax2_ind = ax2_min; ax2_ind < ax2_max; ++ax2_ind) {
for (int plus = 0; plus <= pl.meshlines_width_; plus++) {
if (ax1_ind+plus >= 0 && ax1_ind+plus < pl.pixels_[0])
data(ax1_ind+plus, ax2_ind) = rgb;
if (ax1_ind-plus >= 0 && ax1_ind-plus < pl.pixels_[0])
data(ax1_ind-plus, ax2_ind) = rgb;
}
}
}
// Find the bounds along the first axis.
int ax1_min, ax1_max;
if (axis_lines.first.size() > 0) {
double frac = (axis_lines.first.front() - ll_plot[ax1]) / width[ax1];
ax1_min = frac * pl.pixels_[0];
if (ax1_min < 0) ax1_min = 0;
frac = (axis_lines.first.back() - ll_plot[ax1]) / width[ax1];
ax1_max = frac * pl.pixels_[0];
if (ax1_max > pl.pixels_[0]) ax1_max = pl.pixels_[0];
} else {
ax1_min = 0;
ax1_max = pl.pixels_[0];
}
// Iterate across the second axis and draw lines.
for (auto ax2_val : axis_lines.second) {
double frac = (ax2_val - ll_plot[ax2]) / width[ax2];
int ax2_ind = (1.0 - frac) * pl.pixels_[1];
for (int ax1_ind = ax1_min; ax1_ind < ax1_max; ++ax1_ind) {
for (int plus = 0; plus <= pl.meshlines_width_; plus++) {
if (ax2_ind+plus >= 0 && ax2_ind+plus < pl.pixels_[1])
data(ax1_ind, ax2_ind+plus) = rgb;
if (ax2_ind-plus >= 0 && ax2_ind-plus < pl.pixels_[1])
data(ax1_ind, ax2_ind-plus) = rgb;
}
}
}
}
//==============================================================================
// CREATE_VOXEL outputs a binary file that can be input into silomesh for 3D
// geometry visualization. It works the same way as create_ppm by dragging a
// particle across the geometry for the specified number of voxels. The first 3
// int's in the binary are the number of x, y, and z voxels. The next 3
// double's are the widths of the voxels in the x, y, and z directions. The
// next 3 double's are the x, y, and z coordinates of the lower left
// point. Finally the binary is filled with entries of four int's each. Each
// 'row' in the binary contains four int's: 3 for x,y,z position and 1 for
// cell or material id. For 1 million voxels this produces a file of
// approximately 15MB.
// =============================================================================
void create_voxel(Plot pl)
{
// compute voxel widths in each direction
std::array<double, 3> vox;
vox[0] = pl.width_[0]/(double)pl.pixels_[0];
vox[1] = pl.width_[1]/(double)pl.pixels_[1];
vox[2] = pl.width_[2]/(double)pl.pixels_[2];
// initial particle position
Position ll = pl.origin_ - pl.width_ / 2.;
// Open binary plot file for writing
std::ofstream of;
std::string fname = std::string(pl.path_plot_);
fname = strtrim(fname);
hid_t file_id = file_open(fname, 'w');
// write header info
write_attribute(file_id, "filetype", "voxel");
write_attribute(file_id, "version", VERSION_VOXEL);
write_attribute(file_id, "openmc_version", VERSION);
#ifdef GIT_SHA1
write_attribute(file_id, "git_sha1", GIT_SHA1);
#endif
// Write current date and time
write_attribute(file_id, "date_and_time", time_stamp().c_str());
std::array<int, 3> pixels;
std::copy(pl.pixels_.begin(), pl.pixels_.end(), pixels.begin());
write_attribute(file_id, "num_voxels", pixels);
write_attribute(file_id, "voxel_width", vox);
write_attribute(file_id, "lower_left", ll);
// Create dataset for voxel data -- note that the dimensions are reversed
// since we want the order in the file to be z, y, x
hsize_t dims[3];
dims[0] = pl.pixels_[2];
dims[1] = pl.pixels_[1];
dims[2] = pl.pixels_[0];
hid_t dspace, dset, memspace;
voxel_init(file_id, &(dims[0]), &dspace, &dset, &memspace);
PlotBase pltbase;
pltbase.width_ = pl.width_;
pltbase.origin_ = pl.origin_;
pltbase.basis_ = PlotBasis::xy;
pltbase.pixels_ = pl.pixels_;
pltbase.level_ = -1; // all universes for voxel files
pltbase.color_overlaps_ = pl.color_overlaps_;
ProgressBar pb;
for (int z = 0; z < pl.pixels_[2]; z++) {
// update progress bar
pb.set_value(100.*(double)z/(double)(pl.pixels_[2]-1));
// update z coordinate
pltbase.origin_.z = ll.z + z * vox[2];
// generate ids using plotbase
IdData ids = pltbase.get_map<IdData>();
// select only cell ID data and flip the y-axis
xt::xtensor<int32_t, 2> data1 = xt::flip(xt::view(ids.data_, xt::all(), xt::all(), 0), 0);
// Write to HDF5 dataset
voxel_write_slice(z, dspace, dset, memspace, &(data1(0,0)));
}
voxel_finalize(dspace, dset, memspace);
file_close(file_id);
}
void
voxel_init(hid_t file_id, const hsize_t* dims,
hid_t* dspace, hid_t* dset, hid_t* memspace)
{
// Create dataspace/dataset for voxel data
*dspace = H5Screate_simple(3, dims, nullptr);
*dset = H5Dcreate(file_id, "data", H5T_NATIVE_INT, *dspace, H5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);
// Create dataspace for a slice of the voxel
hsize_t dims_slice[2] {dims[1], dims[2]};
*memspace = H5Screate_simple(2, dims_slice, nullptr);
// Select hyperslab in dataspace
hsize_t start[3] {0, 0, 0};
hsize_t count[3] {1, dims[1], dims[2]};
H5Sselect_hyperslab(*dspace, H5S_SELECT_SET, start, nullptr, count, nullptr);
}
void
voxel_write_slice(int x, hid_t dspace, hid_t dset, hid_t memspace, void* buf)
{
hssize_t offset[3] {x, 0, 0};
H5Soffset_simple(dspace, offset);
H5Dwrite(dset, H5T_NATIVE_INT, memspace, dspace, H5P_DEFAULT, buf);
}
void
voxel_finalize(hid_t dspace, hid_t dset, hid_t memspace)
{
H5Dclose(dset);
H5Sclose(dspace);
H5Sclose(memspace);
}
RGBColor random_color() {
return {int(prn()*255), int(prn()*255), int(prn()*255)};
}
extern "C" int openmc_id_map(const void* plot, int32_t* data_out)
{
auto plt = reinterpret_cast<const PlotBase*>(plot);
if (!plt) {
set_errmsg("Invalid slice pointer passed to openmc_id_map");
return OPENMC_E_INVALID_ARGUMENT;
}
if (plt->color_overlaps_ && model::overlap_check_count.size() == 0) {
model::overlap_check_count.resize(model::cells.size());
}
auto ids = plt->get_map<IdData>();
// write id data to array
std::copy(ids.data_.begin(), ids.data_.end(), data_out);
return 0;
}
extern "C" int openmc_property_map(const void* plot, double* data_out) {
auto plt = reinterpret_cast<const PlotBase*>(plot);
if (!plt) {
set_errmsg("Invalid slice pointer passed to openmc_id_map");
return OPENMC_E_INVALID_ARGUMENT;
}
if (plt->color_overlaps_ && model::overlap_check_count.size() == 0) {
model::overlap_check_count.resize(model::cells.size());
}
auto props = plt->get_map<PropertyData>();
// write id data to array
std::copy(props.data_.begin(), props.data_.end(), data_out);