|
65 | 65 | {1/(a*x^3-b), x, 6, -(ArcTan[(b^(1/3) + 2*a^(1/3)*x)/(Sqrt[3]*b^(1/3))]/(Sqrt[3]*a^(1/3)*b^(2/3))) + Log[b^(1/3) - a^(1/3)*x]/(3*a^(1/3)*b^(2/3)) - Log[b^(2/3) + a^(1/3)*b^(1/3)*x + a^(2/3)*x^2]/(6*a^(1/3)*b^(2/3))}
|
66 | 66 | {1/(x^4-2), x, 3, -(ArcTan[x/2^(1/4)]/(2*2^(3/4))) - ArcTanh[x/2^(1/4)]/(2*2^(3/4))}
|
67 | 67 | {1/(5*x^4-1), x, 3, -(ArcTan[5^(1/4)*x]/(2*5^(1/4))) - ArcTanh[5^(1/4)*x]/(2*5^(1/4))}
|
68 |
| -{1/(3*x^4+7), x, 9, If[$VersionNumber<9, -(ArcTan[1 - (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4))) + ArcTan[1 + (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4)) - Log[Sqrt[21] - Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)) + Log[Sqrt[21] + Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)), -(ArcTan[1 - (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4))) + ArcTan[1 + (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4)) - Log[Sqrt[7] - Sqrt[2]*21^(1/4)*x + Sqrt[3]*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)) + Log[Sqrt[7] + Sqrt[2]*21^(1/4)*x + Sqrt[3]*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4))]} |
| 68 | +{1/(3*x^4+7), x, 9, If[$VersionNumber<9, -(ArcTan[1 - (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4))) + ArcTan[1 + (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4)) - Log[Sqrt[21] - Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)) + Log[Sqrt[21] + Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)), -(ArcTan[1 - (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4))) + ArcTan[1 + (3/7)^(1/4)*Sqrt[2]*x]/(2*Sqrt[2]*3^(1/4)*7^(3/4)) - Log[Sqrt[21] - Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4)) + Log[Sqrt[21] + Sqrt[2]*3^(3/4)*7^(1/4)*x + 3*x^2]/(4*Sqrt[2]*3^(1/4)*7^(3/4))]} |
69 | 69 | {1/(x^4+3*x^2-1), x, 3, (-Sqrt[2/(13*(3 + Sqrt[13]))])*ArcTan[Sqrt[2/(3 + Sqrt[13])]*x] - Sqrt[(1/26)*(3 + Sqrt[13])]*ArcTanh[Sqrt[2/(-3 + Sqrt[13])]*x]}
|
70 | 70 | {1/(x^4-3*x^2-1), x, 3, (-Sqrt[(1/26)*(3 + Sqrt[13])])*ArcTan[Sqrt[2/(-3 + Sqrt[13])]*x] - Sqrt[2/(13*(3 + Sqrt[13]))]*ArcTanh[Sqrt[2/(3 + Sqrt[13])]*x]}
|
71 | 71 | {1/(x^4-3*x^2+1), x, 3, (-Sqrt[2/(5*(3 + Sqrt[5]))])*ArcTanh[Sqrt[2/(3 + Sqrt[5])]*x] + Sqrt[(1/10)*(3 + Sqrt[5])]*ArcTanh[Sqrt[(1/2)*(3 + Sqrt[5])]*x]}
|
|
98 | 98 | {1/(x*Log[x]), x, 2, Log[Log[x]]}
|
99 | 99 | {1/(x*Log[x])^2, x, 3, -ExpIntegralEi[-Log[x]] - 1/(x*Log[x])}
|
100 | 100 | {(Log[x])^p/x, x, 2, Log[x]^(1 + p)/(1 + p)}
|
101 |
| -{Log[x]*(a*x+b), x, 2, (-b)*x - (a*x^2)/4 + (1/2)*(2*b*x + a*x^2)*Log[x]} |
| 101 | +{Log[x]*(a*x+b), x, 2, (-b)*x - (a*x^2)/4 + b*x*Log[x] + (1/2)*a*x^2*Log[x]} |
102 | 102 | {(a*x+b)^2*Log[x], x, 4, (-b^2)*x - (1/2)*a*b*x^2 - (a^2*x^3)/9 - (b^3*Log[x])/(3*a) + ((b + a*x)^3*Log[x])/(3*a)}
|
103 | 103 | {Log[x]/(a*x+b)^2, x, 2, (x*Log[x])/(b*(b + a*x)) - Log[b + a*x]/(a*b)}
|
104 | 104 | {x*Log[a*x+b], x, 3, (b*x)/(2*a) - x^2/4 - (b^2*Log[b + a*x])/(2*a^2) + (1/2)*x^2*Log[b + a*x]}
|
|
238 | 238 | (* Examples involving exponentials and logarithms. *)
|
239 | 239 | {E^x*Log[x], x, 2, -ExpIntegralEi[x] + E^x*Log[x]}
|
240 | 240 | {x*E^x*Log[x], x, 5, -E^x + ExpIntegralEi[x] - E^x*Log[x] + E^x*x*Log[x]}
|
241 |
| -{E^(2*x)*Log[E^x], x, 2, -(E^(2*x)/4) + (1/2)*E^(2*x)*Log[E^x]} |
| 241 | +{E^(2*x)*Log[E^x], x, 3, -(E^(2*x)/4) + (1/2)*E^(2*x)*Log[E^x]} |
242 | 242 |
|
243 | 243 |
|
244 | 244 | (* ::Section::Closed:: *)
|
|
397 | 397 |
|
398 | 398 | (* The next integral appeared in Risch's 1968 paper. *)
|
399 | 399 |
|
400 |
| -{2*x*E^(x^2)*Log[x]+E^(x^2)/x+(Log[x]-2)/(Log[x]^2+x)^2+((2/x)*Log[x]+(1/x)+1)/(Log[x]^2+x), x, -9, E^x^2*Log[x] - Log[x]/(x + Log[x]^2) + Log[x + Log[x]^2]} |
| 400 | +{2*x*E^(x^2)*Log[x]+E^(x^2)/x+(Log[x]-2)/(Log[x]^2+x)^2+((2/x)*Log[x]+(1/x)+1)/(Log[x]^2+x), x, 9, E^x^2*Log[x] - Log[x]/(x + Log[x]^2) + Log[x + Log[x]^2]} |
401 | 401 |
|
402 | 402 |
|
403 | 403 | (* The following integral would not evaluate in REDUCE 3.3. *)
|
|
429 | 429 |
|
430 | 430 | (* This used to reveal bugs in the integrator which have been fixed. *)
|
431 | 431 |
|
432 |
| -{Sqrt[-4*Sqrt[2] + 9]*x - Sqrt[x^4 + 2*x^2 + 4*x + 1]*Sqrt[2], x, 1, (1/2)*Sqrt[9 - 4*Sqrt[2]]*x^2 - Sqrt[2]*CannotIntegrate[Sqrt[1 + 4*x + 2*x^2 + x^4], x]} |
| 432 | +{Sqrt[-4*Sqrt[2] + 9]*x - Sqrt[x^4 + 2*x^2 + 4*x + 1]*Sqrt[2], x, -1, (1/2)*Sqrt[9 - 4*Sqrt[2]]*x^2 - Sqrt[2]*((-(1/3))*Sqrt[1 + 4*x + 2*x^2 + x^4] + (1/3)*(1 + x)*Sqrt[1 + 4*x + 2*x^2 + x^4] + (4*I*(-13 + 3*Sqrt[33])^(1/3)*Sqrt[1 + 4*x + 2*x^2 + x^4])/(4*2^(2/3)*(-I + Sqrt[3]) - 2*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3) + 6*I*(-13 + 3*Sqrt[33])^(1/3)*x) - (8*2^(2/3)*Sqrt[3/(-13 + 3*Sqrt[33] + 4*(-26 + 6*Sqrt[33])^(1/3))]*Sqrt[(I*(-19899 + 3445*Sqrt[33] + (-26 + 6*Sqrt[33])^(2/3)*(-2574 + 466*Sqrt[33]) + (-26 + 6*Sqrt[33])^(1/3)*(-19899 + 3445*Sqrt[33]) + (59697 - 10335*Sqrt[33])*x))/((-39 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 9*Sqrt[33] + 4*I*(3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))*(26 - 6*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x))]*Sqrt[1 + 4*x + 2*x^2 + x^4]*EllipticE[ArcSin[Sqrt[26 - 6*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x]/(Sqrt[(39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] - 9*Sqrt[33] + 4*(3 - I*Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))/(39 - 13*I*Sqrt[3] + 9*I*Sqrt[11] - 9*Sqrt[33] + 4*(3 + I*Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))]*Sqrt[26 - 6*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x])], (4*(21 + 7*I*Sqrt[3] - 3*I*Sqrt[11] - 3*Sqrt[33]) + (3 - I*Sqrt[3] - 3*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3))/(4*(21 - 7*I*Sqrt[3] + 3*I*Sqrt[11] - 3*Sqrt[33]) + (3 + I*Sqrt[3] + 3*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3))])/((4*2^(2/3) - (-13 + 3*Sqrt[33])^(1/3) - 2^(1/3)*(-13 + 3*Sqrt[33])^(2/3) + 3*(-13 + 3*Sqrt[33])^(1/3)*x)*Sqrt[(I*(1 + x))/((104 - 24*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3))*(26 - 6*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x))]*Sqrt[26 - 6*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x]*Sqrt[26 - 6*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x]) + ((2^(1/3)*(13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] - 3*Sqrt[33]) + 4*2^(2/3)*(1 + I*Sqrt[3])*(-13 + 3*Sqrt[33])^(1/3) + 20*(-13 + 3*Sqrt[33])^(2/3))*(4*2^(2/3)*(I + Sqrt[3]) + 8*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(-I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3))*Sqrt[(52 - 12*Sqrt[33] - 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) + 4*(-26 + 6*Sqrt[33])^(2/3))/(-13 + 3*Sqrt[33] + 4*(-26 + 6*Sqrt[33])^(1/3))]*Sqrt[(1/(1 + x))*(-8*I*(-13 + 3*Sqrt[33]) + (-43*I - 13*Sqrt[3] + 9*Sqrt[11] + 5*I*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (2*I + 4*Sqrt[3] - 2*I*Sqrt[33])*(-26 + 6*Sqrt[33])^(2/3) + (8*I*(-13 + 3*Sqrt[33]) + (13*I - 13*Sqrt[3] + 9*Sqrt[11] - 3*I*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3))*x)]*Sqrt[1 + 4*x + 2*x^2 + x^4]*EllipticF[ArcSin[(Sqrt[52 - 12*Sqrt[33] - 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) + 4*(-26 + 6*Sqrt[33])^(2/3)]*Sqrt[26 - 6*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x])/(2^(1/6)*Sqrt[3]*(-13 + 3*Sqrt[33])^(2/3)*Sqrt[39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] - 9*Sqrt[33] + 4*(3 - I*Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3)]*Sqrt[1 + x])], (4*(21*I - 7*Sqrt[3] + 3*Sqrt[11] - 3*I*Sqrt[33]) + (3*I + Sqrt[3] + 3*Sqrt[11] + 3*I*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3))/(-56*Sqrt[3] + 24*Sqrt[11] + 2*(Sqrt[3] + 3*Sqrt[11])*(-26 + 6*Sqrt[33])^(1/3))])/(3*2^(2/3)*3^(3/4)*(-13 + 3*Sqrt[33])^(1/3)*Sqrt[39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] - 9*Sqrt[33] + 4*(3 - I*Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3)]*Sqrt[1 + x]*(4*2^(2/3)*(-I + Sqrt[3]) - 2*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3) + 6*I*(-13 + 3*Sqrt[33])^(1/3)*x)*Sqrt[26 - 6*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3) + 6*(-13 + 3*Sqrt[33])*x]*Sqrt[(8*(-13 + 3*Sqrt[33]) - (5 - 3*I*Sqrt[3] + 3*I*Sqrt[11] + Sqrt[33])*(-26 + 6*Sqrt[33])^(2/3) + (-26 + 6*Sqrt[33])^(1/3)*(-41 + 15*I*Sqrt[3] - 3*I*Sqrt[11] + 7*Sqrt[33]) + (104 - 24*Sqrt[33] + (-13 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + 4*I*(I + Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3))*x)/((-39 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 9*Sqrt[33] + 4*I*(3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))*(1 + x))]) + ((4*2^(2/3) + 2*(-13 + 3*Sqrt[33])^(1/3) - 2^(1/3)*(-13 + 3*Sqrt[33])^(2/3))*(4*2^(2/3)*(I + Sqrt[3]) - 4*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(-I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3))*(4*2^(2/3)*(-I + Sqrt[3]) + 4*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3))*Sqrt[(-39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 9*Sqrt[33] - 4*I*(-3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))/(104 - 24*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3))]*Sqrt[1 + x]*Sqrt[(104 - 24*Sqrt[33] + 2*(1 + 14*I*Sqrt[3] - 6*I*Sqrt[11] + Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-7 - I*Sqrt[3] - 3*I*Sqrt[11] + Sqrt[33])*(-26 + 6*Sqrt[33])^(2/3) + 2*(-52 + 12*Sqrt[33] + 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) - 4*(-26 + 6*Sqrt[33])^(2/3))*x)/((-39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 9*Sqrt[33] - 4*I*(-3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))*(1 + x))]*Sqrt[(104 - 24*Sqrt[33] + 2*(1 - 14*I*Sqrt[3] + 6*I*Sqrt[11] + Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-7 + I*Sqrt[3] + 3*I*Sqrt[11] + Sqrt[33])*(-26 + 6*Sqrt[33])^(2/3) + 2*(-52 + 12*Sqrt[33] + 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) - 4*(-26 + 6*Sqrt[33])^(2/3))*x)/((-39 - 13*I*Sqrt[3] + 9*I*Sqrt[11] + 9*Sqrt[33] + 4*I*(3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))*(1 + x))]*Sqrt[1 + 4*x + 2*x^2 + x^4]*EllipticPi[(2^(1/3)*(4*2^(1/3)*(-3*I + Sqrt[3]) + (3*I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3)))/(4*2^(2/3)*(-I + Sqrt[3]) - 8*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3)), ArcSin[Sqrt[13 - 3*Sqrt[33] - 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) + 4*(-26 + 6*Sqrt[33])^(2/3) + (-39 + 9*Sqrt[33])*x]/(2^(1/6)*Sqrt[3]*(-13 + 3*Sqrt[33])^(2/3)*Sqrt[(-39 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 9*Sqrt[33] - 4*I*(-3*I + Sqrt[3])*(-26 + 6*Sqrt[33])^(1/3))/(104 - 24*Sqrt[33] + (-13 + 13*I*Sqrt[3] - 9*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3) + (-4 - 4*I*Sqrt[3])*(-26 + 6*Sqrt[33])^(2/3))]*Sqrt[1 + x])], (4*(21 - 7*I*Sqrt[3] + 3*I*Sqrt[11] - 3*Sqrt[33]) + (3 + I*Sqrt[3] + 3*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3))/(4*(21 + 7*I*Sqrt[3] - 3*I*Sqrt[11] - 3*Sqrt[33]) + (3 - I*Sqrt[3] - 3*I*Sqrt[11] + 3*Sqrt[33])*(-26 + 6*Sqrt[33])^(1/3))])/(2^(1/6)*Sqrt[3]*(4*2^(2/3)*(I + Sqrt[3]) + 2*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(-I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3) - 6*I*(-13 + 3*Sqrt[33])^(1/3)*x)*(4*2^(2/3)*(-I + Sqrt[3]) - 2*I*(-13 + 3*Sqrt[33])^(1/3) + 2^(1/3)*(I + Sqrt[3])*(-13 + 3*Sqrt[33])^(2/3) + 6*I*(-13 + 3*Sqrt[33])^(1/3)*x)*Sqrt[13 - 3*Sqrt[33] - 2^(1/3)*(-13 + 3*Sqrt[33])^(4/3) + 4*(-26 + 6*Sqrt[33])^(2/3) + (-39 + 9*Sqrt[33])*x]))} |
433 | 433 |
|
434 | 434 |
|
435 | 435 | (* It is interesting to see how much of this one can be done; *)
|
|
0 commit comments