-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_simple.py
49 lines (41 loc) · 1.39 KB
/
predict_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from modules.data.read import DataReader, add_data_reader_arguments
import argparse
from predict_runormas import predict
from src.xl_wrapper import RuGPT3XL
from src.utils import print_args
def get_model(reader, args):
model = RuGPT3XL.from_pretrained(
model_name_or_path=args.tokenizer_name,
seq_len=512,
weights_path=args.weights_path,
deepspeed_config_path=args.deepspeed_config_path
)
model.tokenizer = reader.tokenizer
return model
def add_prediction_arguments(parser):
group = parser.add_argument_group('prediction', 'Prediction arguments')
group.add_argument(
'--weights_path',
type=str,
help='path pretrained model'
)
group.add_argument(
'--deepspeed_config_path',
type=str,
default="",
help='path to deepspeed config'
)
return parser
def main():
arg_parser = argparse.ArgumentParser(description="Predict")
arg_parser = add_data_reader_arguments(arg_parser)
arg_parser = add_prediction_arguments(arg_parser)
args = arg_parser.parse_args()
args.data_parts = args.data_parts.split(",")
print_args(args)
reader = DataReader(**vars(args))
reader.prc(is_save=False)
model = get_model(reader, args)
predict(reader, model, args.save_preds_path, 0, num_beams=args.num_beams, do_sample=bool(args.do_sample))
if __name__ == "__main__":
main()