-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_boneAge.py
290 lines (258 loc) · 10.9 KB
/
dataset_boneAge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import cv2
import pdb
import json
import torch
import numpy as np
import pandas as pd
from PIL import Image,ImageOps
from torchvision import transforms
from torch.utils.data import Dataset
from einops import rearrange
import argparse
import cv2
from albumentations import ShiftScaleRotate,HorizontalFlip,RandomResizedCrop,Compose,Resize
from albumentations.augmentations.transforms import Lambda, RandomBrightnessContrast
from albumentations.pytorch import ToTensorV2 as ToTensor
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
# ========================================================================
# BASE FUNCTION
def load_json(route_json):
with open(route_json, 'r') as f:
data = json.load(f)
return data
# ========================================================================
# BASE FUNCTION
def crop_img(image, bbox):
cropped = image[bbox[1]:bbox[1]+bbox[3],
bbox[0]:bbox[0]+bbox[2]]
return cropped
# ========================================================================
# FOR FINE-TUNING
# RHPE pre processing
# Hard way to get left hand
def crop_one_hand_anno(image_local_path, image_name, rois):
img = Image.open(image_local_path)
# Loading as PIL.Image, converting to numpy while ensuring grayscale
img = img.convert('L')
img = np.array(img)
imgs_list = rois['images']
img_id=[im['id'] for im in imgs_list if im['file_name']==image_name+'.png'][0]
del imgs_list
# Getting the image annotations, using said ID
annotations = rois['annotations']
for im_ann in annotations:
if im_ann['image_id'] == img_id:
im_kpts = im_ann['keypoints']
im_bbox = (list(map(int, im_ann['bbox'])))
break
del annotations
del rois # Cleaning memory
cropped_img = crop_img(img, im_bbox)
#RHPE data are always inverted
if np.argmax(np.histogram(cropped_img,20)[0])>10:
invert_crop_img = np.array(ImageOps.invert(Image.fromarray(cropped_img).convert('RGB')))
else:
invert_crop_img = cropped_img
return invert_crop_img
# ========================================================================
# FOR FINE-TUNING
# RHPE pre processing
# Easy way to get left hand
def crop_one_hand_half(image_local_path):
img = Image.open(image_local_path)
# Loading as PIL.Image, converting to numpy while ensuring grayscale
img = img.convert('L')
img = np.array(img)
w,h=img.shape
im_bbox=[0,0,w//2,h]
cropped_img = crop_img(img, im_bbox)
#RHPE data are always inverted
if np.argmax(np.histogram(cropped_img,20)[0])>10:
invert_crop_img = np.array(ImageOps.invert(Image.fromarray(cropped_img).convert('RGB')))
else:
invert_crop_img = np.array(Image.fromarray(cropped_img).convert('RGB'))
return invert_crop_img
# ========================================================================
class BAADataset(Dataset):
"""BoneAge dataset for fine-tuning"""
def __init__(self, img_dir, ann_file, input_size,
json_file = None, img_transform = None, dataset=None):
self.annotations = pd.concat([pd.read_csv(f) for f in ann_file])
self.img_dir = img_dir
self.kpts = [load_json(f) for f in json_file] if json_file else None
#TODO
self.img_transform = transforms.Compose([
transforms.Resize((input_size, input_size)),
transforms.ToTensor()]
) if img_transform is None else img_transform
self.dataset = dataset if dataset else 'RHPE'
def __getitem__(self, idx):
if not isinstance(idx, int):
idx = idx.item()
info = self.annotations.iloc[idx]
if self.dataset == 'RHPE':
image_name=str(info[0]).zfill(5)
else:
image_name=str(info[0])
for i in range(len(self.img_dir)):
image_local_path = os.path.join(self.img_dir[i], image_name + '.png')
if self.dataset == 'RSNA':
if os.path.exists(image_local_path):
img = Image.open(image_local_path)
# Loading as PIL.Image, converting to numpy while ensuring grayscale
img = img.convert('RGB')
img = np.array(img)
break
elif self.dataset == 'RHPE':
if os.path.exists(image_local_path):
if self.kpts is None:
img = crop_one_hand_half(image_local_path)
else:
img = crop_one_hand_anno(image_local_path, image_name, self.kpts[i])
break
#TODO 这尼玛RHPE/RSNA的inference没标签啊... DHA的inference有标签,但是是不是这样写呢?
bone_age = torch.tensor(info[2], dtype = torch.float)
gender = torch.tensor(info[1]*1, dtype = torch.float).unsqueeze(-1)
if self.dataset == 'RHPE':
# if self.inference:
# chronological_age = torch.tensor(info[2], dtype = torch.float).unsqueeze(-1)
# else:
chronological_age = torch.tensor(info[3], dtype = torch.float).unsqueeze(-1)
else:
chronological_age = torch.tensor(0, dtype = torch.float).unsqueeze(-1)
if self.img_transform:
if type(self.img_transform) == Compose:
out_im = self.img_transform(image = img)["image"]
else:
out_im = self.img_transform(Image.fromarray(img))
else:
out_im = img
out_im = out_im.to(torch.float32)
return out_im, gender, chronological_age, bone_age #x,y,z,label
def __len__(self):
return len(self.annotations)
# ======================================================================
def build_BAA_dataset_train(is_train, args):
'''
It is import to init args!!
first args.input_size
second args.img_transform
third args.dataset
if dataset is not RHPE,then is_train is false
'''
if args.dataset == 'RSNA':
if is_train:
img_dir = [
# "/data2/zly/BoneData/RSNA/DATA_TRAIN",
"/home/data2/zly/BoneData/RSNA/DATA_TRAIN",
]
ann_file = [
# "/data2/zly/BoneData/RSNA/ANN_PATH_TRAIN.csv",
"/home/data2/zly/BoneData/RSNA/ANN_PATH_TRAIN.csv",
]
json_file = [
# "/data2/zly/BoneData/RSNA/ROIS_PATH_TRAIN.json",
"/home/data2/zly/BoneData/RSNA/ROIS_PATH_TRAIN.json",
]
else:
img_dir = [
# "/data2/zly/BoneData/RSNA/DATA_VAL"
"/home/data2/zly/BoneData/RSNA/DATA_VAL"
]
ann_file = [
# "/data2/zly/BoneData/RSNA/ANN_PATH_VAL.csv",
"/home/data2/zly/BoneData/RSNA/ANN_PATH_VAL.csv",
]
json_file = [
# "/data2/zly/BoneData/RSNA/ROIS_PATH_VAL.json",
"/home/data2/zly/BoneData/RSNA/ROIS_PATH_VAL.json",
]
#elif in DHA
else:
if is_train:
img_dir =[
# "/data2/zly/BoneData/RHPE/RHPE_TRAIN"
"/home/data2/zly/BoneData/RHPE/RHPE_TRAIN"
]
ann_file = [
# "/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_Boneage_train.csv"
"/home/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_Boneage_train.csv"
]
#TODO whether to use easy crop to augment data
json_file = [
# "/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_anatomical_ROIs_train.json"
"/home/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_anatomical_ROIs_train.json"
]
else:
img_dir =[
# "/data2/zly/BoneData/RHPE/RHPE_VAL"
"/home/data2/zly/BoneData/RHPE/RHPE_VAL"
]
ann_file = [
# "/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_Boneage_val.csv"
"/home/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_Boneage_val.csv"
]
json_file = [
# "/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_anatomical_ROIs_val.json"
"/home/data2/zly/BoneData/RHPE/RHPE_ANNOTATIONS/RHPE_anatomical_ROIs_val.json"
]
dataset = BAADataset(input_size=args.input_size,img_transform=args.img_transform,dataset=args.dataset,img_dir=img_dir, ann_file=ann_file,json_file=json_file)
return dataset
if __name__ == '__main__':
try:
parser = argparse.ArgumentParser('BAA pre-training test', add_help=False)
parser.add_argument('--input_size', default=512, type=int,
help='images input size for backbone')
opt = parser.parse_args(args=[])
RandomErasing = transforms.RandomErasing(scale=(0.02, 0.08), ratio = (0.5, 2), p = 0.8)
def randomErase(image, **kwargs):
return RandomErasing(image)
def sample_normalize(image, **kwargs):
image = image/255
channel = image.shape[2]
mean, std = image.reshape((-1, channel)).mean(axis = 0), image.reshape((-1, channel)).std(axis = 0)
return (image-mean)/(std + 1e-3)
transform_train = Compose([
# RandomBrightnessContrast(p = 0.8),
Resize(512, 512),
RandomResizedCrop(512, 512,
(0.5, 1.0), p = 0.5),
ShiftScaleRotate(shift_limit = 0.2, scale_limit = 0.2, rotate_limit=20, border_mode = cv2.BORDER_CONSTANT, value = 0.0, p = 0.8),
# HorizontalFlip(p = 0.5),
# ShiftScaleRotate(shift_limit = 0.2, scale_limit = 0.2, rotate_limit=20, p = 0.8),
HorizontalFlip(p = 0.5),
RandomBrightnessContrast(p = 0.8, contrast_limit=(-0.3, 0.2)),
Lambda(image = sample_normalize),
ToTensor(),
Lambda(image = randomErase)
])
transform_val = Compose([
Lambda(image = sample_normalize),
ToTensor(),
])
# opt.img_transform = transforms.Compose([
# transforms.Resize((512, 512)),
# transforms.ToTensor()]
# )
opt.img_transform = transform_train
opt.dataset = 'RSNA'
is_train = False
dataset = build_BAA_dataset_train(is_train,opt)
data_loader_train = torch.utils.data.DataLoader(
dataset,
batch_size=10,
num_workers=12,
# pin_memory=args.pin_mem,
drop_last=True,
# worker_init_fn=utils.seed_worker
)
for (whats,batch) in enumerate(data_loader_train):
img, sex, cAge, label = batch
print(img.shape,sex.shape,cAge.shape,label.shape)
print(img.dtype,sex.dtype,cAge.dtype,label.dtype)
break
except Exception as e:
print(e)
import pdb; pdb.set_trace()