forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgltfscenerendering.h
170 lines (148 loc) · 4.63 KB
/
gltfscenerendering.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
* Vulkan Example - Scene rendering
*
* Copyright (C) 2020-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Render a complete scene loaded from an glTF file. The sample is based on the glTF model loading sample,
* and adds data structures, functions and shaders required to render a more complex scene using Crytek's Sponza model.
*
* This sample comes with a tutorial, see the README.md in this folder
*/
#define TINYGLTF_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#define TINYGLTF_NO_STB_IMAGE_WRITE
#define TINYGLTF_NO_STB_IMAGE
#define TINYGLTF_NO_EXTERNAL_IMAGE
#ifdef VK_USE_PLATFORM_ANDROID_KHR
#define TINYGLTF_ANDROID_LOAD_FROM_ASSETS
#endif
#include "tiny_gltf.h"
#include "vulkanexamplebase.h"
// Contains everything required to render a basic glTF scene in Vulkan
// This class is heavily simplified (compared to glTF's feature set) but retains the basic glTF structure
class VulkanglTFScene
{
public:
// The class requires some Vulkan objects so it can create it's own resources
vks::VulkanDevice* vulkanDevice;
VkQueue copyQueue;
// The vertex layout for the samples' model
struct Vertex {
glm::vec3 pos;
glm::vec3 normal;
glm::vec2 uv;
glm::vec3 color;
glm::vec4 tangent;
};
// Single vertex buffer for all primitives
struct {
VkBuffer buffer;
VkDeviceMemory memory;
} vertices;
// Single index buffer for all primitives
struct {
int count;
VkBuffer buffer;
VkDeviceMemory memory;
} indices;
// The following structures roughly represent the glTF scene structure
// To keep things simple, they only contain those properties that are required for this sample
struct Node;
// A primitive contains the data for a single draw call
struct Primitive {
uint32_t firstIndex;
uint32_t indexCount;
int32_t materialIndex;
};
// Contains the node's (optional) geometry and can be made up of an arbitrary number of primitives
struct Mesh {
std::vector<Primitive> primitives;
};
// A node represents an object in the glTF scene graph
struct Node {
Node* parent;
std::vector<Node*> children;
Mesh mesh;
glm::mat4 matrix;
std::string name;
bool visible = true;
~Node() {
for (auto& child : children) {
delete child;
}
}
};
// A glTF material stores information in e.g. the texture that is attached to it and colors
struct Material {
glm::vec4 baseColorFactor = glm::vec4(1.0f);
uint32_t baseColorTextureIndex;
uint32_t normalTextureIndex;
std::string alphaMode = "OPAQUE";
float alphaCutOff;
bool doubleSided = false;
VkDescriptorSet descriptorSet;
VkPipeline pipeline;
};
// Contains the texture for a single glTF image
// Images may be reused by texture objects and are as such separated
struct Image {
vks::Texture2D texture;
};
// A glTF texture stores a reference to the image and a sampler
// In this sample, we are only interested in the image
struct Texture {
int32_t imageIndex;
};
/*
Model data
*/
std::vector<Image> images;
std::vector<Texture> textures;
std::vector<Material> materials;
std::vector<Node*> nodes;
std::string path;
~VulkanglTFScene();
VkDescriptorImageInfo getTextureDescriptor(const size_t index);
void loadImages(tinygltf::Model& input);
void loadTextures(tinygltf::Model& input);
void loadMaterials(tinygltf::Model& input);
void loadNode(const tinygltf::Node& inputNode, const tinygltf::Model& input, VulkanglTFScene::Node* parent, std::vector<uint32_t>& indexBuffer, std::vector<VulkanglTFScene::Vertex>& vertexBuffer);
void drawNode(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout, VulkanglTFScene::Node* node);
void draw(VkCommandBuffer commandBuffer, VkPipelineLayout pipelineLayout);
};
class VulkanExample : public VulkanExampleBase
{
public:
VulkanglTFScene glTFScene;
struct ShaderData {
vks::Buffer buffer;
struct Values {
glm::mat4 projection;
glm::mat4 view;
glm::vec4 lightPos = glm::vec4(0.0f, 2.5f, 0.0f, 1.0f);
glm::vec4 viewPos;
} values;
} shaderData;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
struct DescriptorSetLayouts {
VkDescriptorSetLayout matrices{ VK_NULL_HANDLE };
VkDescriptorSetLayout textures{ VK_NULL_HANDLE };
} descriptorSetLayouts;
VulkanExample();
~VulkanExample();
virtual void getEnabledFeatures();
void buildCommandBuffers();
void loadglTFFile(std::string filename);
void loadAssets();
void setupDescriptors();
void preparePipelines();
void prepareUniformBuffers();
void updateUniformBuffers();
void prepare();
virtual void render();
virtual void OnUpdateUIOverlay(vks::UIOverlay* overlay);
};