forked from SaschaWillems/Vulkan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindirectdraw.cpp
483 lines (413 loc) · 20.2 KB
/
indirectdraw.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*
* Vulkan Example - Indirect drawing
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Use a device local buffer that stores draw commands for instanced rendering of different meshes stored
* in the same buffer.
*
* Indirect drawing offloads draw command generation and offers the ability to update them on the GPU
* without the CPU having to touch the buffer again, also reducing the number of drawcalls.
*
* The example shows how to setup and fill such a buffer on the CPU side, stages it to the device and
* shows how to render it using only one draw command.
*
* See readme.md for details
*
*/
#include "vulkanexamplebase.h"
#include "VulkanglTFModel.h"
// Number of instances per object
#if defined(__ANDROID__)
#define OBJECT_INSTANCE_COUNT 1024
// Circular range of plant distribution
#define PLANT_RADIUS 20.0f
#else
#define OBJECT_INSTANCE_COUNT 2048
// Circular range of plant distribution
#define PLANT_RADIUS 25.0f
#endif
class VulkanExample : public VulkanExampleBase
{
public:
struct {
vks::Texture2DArray plants;
vks::Texture2D ground;
} textures;
struct {
vkglTF::Model plants;
vkglTF::Model ground;
vkglTF::Model skysphere;
} models;
// Per-instance data block
struct InstanceData {
glm::vec3 pos;
glm::vec3 rot;
float scale;
uint32_t texIndex;
};
// Contains the instanced data
vks::Buffer instanceBuffer;
// Contains the indirect drawing commands
vks::Buffer indirectCommandsBuffer;
uint32_t indirectDrawCount{ 0 };
struct UniformData {
glm::mat4 projection;
glm::mat4 view;
} uniformData;
vks::Buffer uniformBuffer;
struct {
VkPipeline plants{ VK_NULL_HANDLE };
VkPipeline ground{ VK_NULL_HANDLE };
VkPipeline skysphere{ VK_NULL_HANDLE };
} pipelines;
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
VkSampler samplerRepeat{ VK_NULL_HANDLE };
uint32_t objectCount = 0;
// Store the indirect draw commands containing index offsets and instance count per object
std::vector<VkDrawIndexedIndirectCommand> indirectCommands;
VulkanExample() : VulkanExampleBase()
{
title = "Indirect rendering";
camera.type = Camera::CameraType::firstperson;
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 512.0f);
camera.setRotation(glm::vec3(-12.0f, 159.0f, 0.0f));
camera.setTranslation(glm::vec3(0.4f, 1.25f, 0.0f));
camera.movementSpeed = 5.0f;
}
~VulkanExample()
{
if (device) {
vkDestroyPipeline(device, pipelines.plants, nullptr);
vkDestroyPipeline(device, pipelines.ground, nullptr);
vkDestroyPipeline(device, pipelines.skysphere, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
textures.plants.destroy();
textures.ground.destroy();
instanceBuffer.destroy();
indirectCommandsBuffer.destroy();
uniformBuffer.destroy();
}
}
// Enable physical device features required for this example
virtual void getEnabledFeatures()
{
// Example uses multi draw indirect if available
if (deviceFeatures.multiDrawIndirect) {
enabledFeatures.multiDrawIndirect = VK_TRUE;
}
// Enable anisotropic filtering if supported
if (deviceFeatures.samplerAnisotropy) {
enabledFeatures.samplerAnisotropy = VK_TRUE;
}
};
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = { { 0.18f, 0.27f, 0.5f, 0.0f } };
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
// Set target frame buffer
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
// Skysphere
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.skysphere);
models.skysphere.draw(drawCmdBuffers[i]);
// Ground
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.ground);
models.ground.draw(drawCmdBuffers[i]);
// [POI] Instanced multi draw rendering of the plants
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.plants);
// Binding point 0 : Mesh vertex buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &models.plants.vertices.buffer, offsets);
// Binding point 1 : Instance data buffer
vkCmdBindVertexBuffers(drawCmdBuffers[i], 1, 1, &instanceBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], models.plants.indices.buffer, 0, VK_INDEX_TYPE_UINT32);
// If the multi draw feature is supported:
// One draw call for an arbitrary number of objects
// Index offsets and instance count are taken from the indirect buffer
if (vulkanDevice->features.multiDrawIndirect)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, 0, indirectDrawCount, sizeof(VkDrawIndexedIndirectCommand));
}
else
{
// If multi draw is not available, we must issue separate draw commands
for (auto j = 0; j < indirectCommands.size(); j++)
{
vkCmdDrawIndexedIndirect(drawCmdBuffers[i], indirectCommandsBuffer.buffer, j * sizeof(VkDrawIndexedIndirectCommand), 1, sizeof(VkDrawIndexedIndirectCommand));
}
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void loadAssets()
{
const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
models.plants.loadFromFile(getAssetPath() + "models/plants.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.ground.loadFromFile(getAssetPath() + "models/plane_circle.gltf", vulkanDevice, queue, glTFLoadingFlags);
models.skysphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
textures.plants.loadFromFile(getAssetPath() + "textures/texturearray_plants_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
textures.ground.loadFromFile(getAssetPath() + "textures/ground_dry_rgba.ktx", VK_FORMAT_R8G8B8A8_UNORM, vulkanDevice, queue);
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2),
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Binding 1: Fragment shader combined sampler (plants texture array)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 1),
// Binding 1: Fragment shader combined sampler (ground texture)
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, VK_SHADER_STAGE_FRAGMENT_BIT, 2),
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0: Vertex shader uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffer.descriptor),
// Binding 1: Plants texture array combined
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &textures.plants.descriptor),
// Binding 2: Ground texture combined
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 2, &textures.ground.descriptor)
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipelines
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass);
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
// This example uses two different input states, one for the instanced part and one for non-instanced rendering
VkPipelineVertexInputStateCreateInfo inputState = vks::initializers::pipelineVertexInputStateCreateInfo();
std::vector<VkVertexInputBindingDescription> bindingDescriptions;
std::vector<VkVertexInputAttributeDescription> attributeDescriptions;
// Vertex input bindings
// The instancing pipeline uses a vertex input state with two bindings
bindingDescriptions = {
// Binding point 0: Mesh vertex layout description at per-vertex rate
vks::initializers::vertexInputBindingDescription(0, sizeof(vkglTF::Vertex), VK_VERTEX_INPUT_RATE_VERTEX),
// Binding point 1: Instanced data at per-instance rate
vks::initializers::vertexInputBindingDescription(1, sizeof(InstanceData), VK_VERTEX_INPUT_RATE_INSTANCE)
};
// Vertex attribute bindings
// Note that the shader declaration for per-vertex and per-instance attributes is the same, the different input rates are only stored in the bindings:
// instanced.vert:
// layout (location = 0) in vec3 inPos; Per-Vertex
// ...
// layout (location = 4) in vec3 instancePos; Per-Instance
attributeDescriptions = {
// Per-vertex attributes
// These are advanced for each vertex fetched by the vertex shader
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, 0), // Location 0: Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 3), // Location 1: Normal
vks::initializers::vertexInputAttributeDescription(0, 2, VK_FORMAT_R32G32_SFLOAT, sizeof(float) * 6), // Location 2: Texture coordinates
vks::initializers::vertexInputAttributeDescription(0, 3, VK_FORMAT_R32G32B32_SFLOAT, sizeof(float) * 8), // Location 3: Color
// Per-Instance attributes
// These are fetched for each instance rendered
vks::initializers::vertexInputAttributeDescription(1, 4, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, pos)), // Location 4: Position
vks::initializers::vertexInputAttributeDescription(1, 5, VK_FORMAT_R32G32B32_SFLOAT, offsetof(InstanceData, rot)), // Location 5: Rotation
vks::initializers::vertexInputAttributeDescription(1, 6, VK_FORMAT_R32_SFLOAT, offsetof(InstanceData, scale)), // Location 6: Scale
vks::initializers::vertexInputAttributeDescription(1, 7, VK_FORMAT_R32_SINT, offsetof(InstanceData, texIndex)), // Location 7: Texture array layer index
};
inputState.pVertexBindingDescriptions = bindingDescriptions.data();
inputState.pVertexAttributeDescriptions = attributeDescriptions.data();
inputState.vertexBindingDescriptionCount = static_cast<uint32_t>(bindingDescriptions.size());
inputState.vertexAttributeDescriptionCount = static_cast<uint32_t>(attributeDescriptions.size());
pipelineCreateInfo.pVertexInputState = &inputState;
// Indirect (and instanced) pipeline for the plants
shaderStages[0] = loadShader(getShadersPath() + "indirectdraw/indirectdraw.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "indirectdraw/indirectdraw.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.plants));
// Only use non-instanced vertex attributes for models rendered without instancing
inputState.vertexBindingDescriptionCount = 1;
inputState.vertexAttributeDescriptionCount = 4;
// Ground
shaderStages[0] = loadShader(getShadersPath() + "indirectdraw/ground.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "indirectdraw/ground.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
rasterizationState.cullMode = VK_CULL_MODE_BACK_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.ground));
// Skysphere
shaderStages[0] = loadShader(getShadersPath() + "indirectdraw/skysphere.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "indirectdraw/skysphere.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
depthStencilState.depthWriteEnable = VK_FALSE;
rasterizationState.cullMode = VK_CULL_MODE_FRONT_BIT;
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipelines.skysphere));
}
// Prepare (and stage) a buffer containing the indirect draw commands
void prepareIndirectData()
{
indirectCommands.clear();
// Create on indirect command for node in the scene with a mesh attached to it
uint32_t m = 0;
for (auto &node : models.plants.nodes)
{
if (node->mesh)
{
VkDrawIndexedIndirectCommand indirectCmd{};
indirectCmd.instanceCount = OBJECT_INSTANCE_COUNT;
indirectCmd.firstInstance = m * OBJECT_INSTANCE_COUNT;
// A glTF node may consist of multiple primitives, but for this saample we only care for the first primitive
indirectCmd.firstIndex = node->mesh->primitives[0]->firstIndex;
indirectCmd.indexCount = node->mesh->primitives[0]->indexCount;
indirectCommands.push_back(indirectCmd);
m++;
}
}
indirectDrawCount = static_cast<uint32_t>(indirectCommands.size());
objectCount = 0;
for (auto indirectCmd : indirectCommands)
{
objectCount += indirectCmd.instanceCount;
}
vks::Buffer stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
indirectCommands.size() * sizeof(VkDrawIndexedIndirectCommand),
indirectCommands.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&indirectCommandsBuffer,
stagingBuffer.size));
vulkanDevice->copyBuffer(&stagingBuffer, &indirectCommandsBuffer, queue);
stagingBuffer.destroy();
}
// Prepare (and stage) a buffer containing instanced data for the mesh draws
void prepareInstanceData()
{
std::vector<InstanceData> instanceData;
instanceData.resize(objectCount);
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::uniform_real_distribution<float> uniformDist(0.0f, 1.0f);
for (uint32_t i = 0; i < objectCount; i++) {
float theta = 2 * float(M_PI) * uniformDist(rndEngine);
float phi = acos(1 - 2 * uniformDist(rndEngine));
instanceData[i].rot = glm::vec3(0.0f, float(M_PI) * uniformDist(rndEngine), 0.0f);
instanceData[i].pos = glm::vec3(sin(phi) * cos(theta), 0.0f, cos(phi)) * PLANT_RADIUS;
instanceData[i].scale = 1.0f + uniformDist(rndEngine) * 2.0f;
instanceData[i].texIndex = i / OBJECT_INSTANCE_COUNT;
}
vks::Buffer stagingBuffer;
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&stagingBuffer,
instanceData.size() * sizeof(InstanceData),
instanceData.data()));
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
&instanceBuffer,
stagingBuffer.size));
vulkanDevice->copyBuffer(&stagingBuffer, &instanceBuffer, queue);
stagingBuffer.destroy();
}
void prepareUniformBuffers()
{
VK_CHECK_RESULT(vulkanDevice->createBuffer(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, &uniformBuffer, sizeof(uniformData)));
VK_CHECK_RESULT(uniformBuffer.map());
}
void updateUniformBuffer()
{
uniformData.projection = camera.matrices.perspective;
uniformData.view = camera.matrices.view;
memcpy(uniformBuffer.mapped, &uniformData, sizeof(uniformData));
}
void prepare()
{
VulkanExampleBase::prepare();
loadAssets();
prepareIndirectData();
prepareInstanceData();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared) {
return;
}
updateUniformBuffer();
draw();
}
virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
{
if (!vulkanDevice->features.multiDrawIndirect) {
if (overlay->header("Info")) {
overlay->text("multiDrawIndirect not supported");
}
}
if (overlay->header("Statistics")) {
overlay->text("Objects: %d", objectCount);
}
}
};
VULKAN_EXAMPLE_MAIN()