-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathembedding.py
122 lines (83 loc) · 3.39 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import csv
import numpy as np
import pandas as pd
import pickle
from embedding_as_service.text.encode import Encoder
def load_emb():
sentences = []
sentences_test = []
labels = []
bertt = []
bert = []
elmo = []
xlnet = []
train_file = "/home/reddy/WNUT/data/train.tsv"
val_file = "/home/reddy/WNUT/data/valid.tsv"
test_file = "/home/reddy/WNUT/data/test.tsv"
train_file_list = open(train_file,'rt')
train_data = csv.reader(train_file_list, delimiter='\t')
train_data_list = list(train_data)
val_file_list = open(val_file,'rt')
val_data = csv.reader(val_file_list, delimiter='\t')
val_data_list = list(val_data)
test_file_list = open(test_file,'rt')
test_data = csv.reader(test_file_list, delimiter='\t')
test_data_list = list(test_data)
train_length = len(train_data_list)
val_length = len(val_data_list)
for i in range(1, train_length):
sentences.append(train_data_list[i][1])
temp_label = str(train_data_list[i][-1])
if temp_label == "INFORMATIVE":
labels.append(int(1))
elif temp_label == "UNINFORMATIVE":
labels.append(int(0))
print("Number of Tweets in training: ", train_length, len(labels))
for i in range(1, val_length):
sentences.append(val_data_list[i][1])
temp_label = str(val_data_list[i][-1])
if temp_label == "INFORMATIVE":
labels.append(int(1))
elif temp_label == "UNINFORMATIVE":
labels.append(int(0))
print("Number of Tweets in validation: ", val_length, len(labels))
test_length = len(test_data_list)
for i in range(test_length):
sentences.append(test_data_list[i][1])
sentences_test.append(test_data_list[i][1])
print("Number of sentences: ", len(sentences))
print("lengths: ", train_length, val_length)
xl = Encoder(embedding='xlnet', model='xlnet_large_cased')
xlnet_temp = xl.encode(texts=sentences, pooling='reduce_mean')
el = Encoder(embedding='elmo', model='elmo_bi_lm')
elmo_temp = el.encode(texts=sentences, pooling='reduce_mean')
bt = Encoder(embedding='bert', model='bert_large_cased')
bert_temp = xl.encode(texts=sentences, pooling='reduce_mean')
bert_test = xl.encode(texts=sentences_test, pooling='reduce_mean')
for i in range(len(elmo_temp)):
elvector = elmo_temp[i]
elmo.append(elvector)
elmo = np.asarray(elmo)
for i in range(len(xlnet_temp)):
xlvector = xlnet_temp[i]
xlnet.append(xlvector)
xlnet = np.asarray(xlnet)
for i in range(len(bert_temp)):
bert_vector = bert_temp[i]
bert.append(bert_vector)
bert = np.asarray(bert)
for i in range(len(bert_test)):
bert_t_vector = bert_test[i]
bertt.append(bert_t_vector)
np.ndarray.dump(bertt, open('embeddings/bert_test.np', 'wb'))
np.ndarray.dump(bert[:train_length-1], open('embeddings/bert_train.np', 'wb'))
np.ndarray.dump(bert[train_length-1 : train_length + val_length-2], open('embeddings/bert_val.np', 'wb'))
np.ndarray.dump(xlnet[:train_length-1], open('embeddings/xlnet_train.np', 'wb'))
np.ndarray.dump(elmo[:train_length-1], open('embeddings/elmo_train.np', 'wb'))
np.ndarray.dump(xlnet[train_length-1 : train_length + val_length-2], open('embeddings/xlnet_val.np', 'wb'))
np.ndarray.dump(elmo[train_length-1 : train_length + val_length-2], open('embeddings/elmo_val.np', 'wb'))
labels = np.asarray(labels)
np.ndarray.dump(labels[:train_length-1], open('embeddings/labels_train.np', 'wb'))
np.ndarray.dump(labels[train_length-1 : train_length + val_length-2], open('embeddings/labels_val.np', 'wb'))
load_emb()