-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolo_click_crop_rnn2.py
311 lines (255 loc) · 9.32 KB
/
yolo_click_crop_rnn2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# import the necessary packages
import numpy as np
import argparse
import time
import cv2 as cv2
import os
from math import hypot
import tensorflow as tf
import numpy as np
from polyrnn.src.PolygonModel import PolygonModel
from polyrnn.src.EvalNet import EvalNet
from polyrnn.src.GGNNPolyModel import GGNNPolygonModel
import utils
from poly_utils import vis_polys
import skimage.io as io
from utils_app import *
import os
## Functions
#CLICK CROP
refPt = []
cropping = False
def click_and_crop(event, x, y, flags, param):
# grab references to the global variables
global refPt, cropping
# if the left mouse button was clicked, record the starting
# (x, y) coordinates and indicate that cropping is being
# performed
if event == cv2.EVENT_LBUTTONDOWN:
refPt = [(x, y)]
cropping = True
# check to see if the left mouse button was released
elif event == cv2.EVENT_LBUTTONUP:
# record the ending (x, y) coordinates and indicate that
# the cropping operation is finished
refPt.append((x, y))
cropping = False
# draw a rectangle around the region of interest
cv2.rectangle(image, refPt[0], refPt[1], (0, 255, 0), 2)
cv2.imshow("image", image)
def distance(p1,p2):
#"""Euclidean distance between two points."""
xx1, yy1 = p1
xx2, yy2 = p2
return hypot(xx2 - xx1, yy2 - yy1)
## construct the argument parse and parse the arguments
if False:
print('Argument Parser')
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-y", "--yolo", required=True,
help="base path to YOLO directory")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-t", "--threshold", type=float, default=0.3,
help="threshold when applying non-maxima suppression")
args = vars(ap.parse_args())
if True:
args = {"yolo":'yolo-coco',"image":'dog.jpg',"confidence":0.5,"threshold":0.5}
## load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([args["yolo"], "coco.names"])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([args["yolo"], "yolov3.weights"])
configPath = os.path.sep.join([args["yolo"], "yolov3.cfg"])
# load our YOLO object detector trained on COCO dataset (80 classes)
print("[INFO] loading YOLO from disk...")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# load our input image and grab its spatial dimensions
image = cv2.imread(args["image"])
clone = image.copy()
(H, W) = image.shape[:2]
# determine only the *output* layer names that we need from YOLO
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input image and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes and
# associated probabilities
blob = cv2.dnn.blobFromImage(image, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# show timing information on YOLO
print("[INFO] YOLO took {:.6f} seconds".format(end - start))
# initialize our lists of detected bounding boxes, confidences, and
# class IDs, respectively
boxes = []
confidences = []
classIDs = []
centers = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability) of
# the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to the
# size of the image, keeping in mind that YOLO actually
# returns the center (x, y)-coordinates of the bounding
# box followed by the boxes' width and height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top and
# and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates, confidences,
# and class IDs
boxes.append([x, y, int(width), int(height)])
centers.append((centerX, centerY))
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],args["threshold"])
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the image
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]], confidences[i])
cv2.putText(image, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.namedWindow("image")
cv2.setMouseCallback("image", click_and_crop)
# keep looping until double click
while True:
# display the image and wait for a keypress
cv2.imshow("image", image)
key = cv2.waitKey(1) & 0xFF
#Double Click Break
if(len(refPt)>=2):
break
# if there are two reference points, then crop the region of interest from the image and display it
print("Image Selected")
if len(refPt) >= 2:
roi = clone[refPt[0][1]:refPt[1][1], refPt[0][0]:refPt[1][0]]
x = refPt[0][0]
y = refPt[0][1]
click_pos = (x, y)
distance = [distance(click_pos, x) for x in centers]
index = distance.index(min(distance))
print(x, y)
print(index)
print(LABELS[classIDs[index]])
print()
#CROP
x = boxes[index][0]
y = boxes[index][1]
w = boxes[index][2]
h = boxes[index][3]
hw = max(w, h)
EnlargeFactor = 1.1
x1 = round(max(x+w/2-EnlargeFactor*hw/2, 1))
y1 = round(max(y+h/2-EnlargeFactor*hw/2, 1))
x2 = round(x1 + EnlargeFactor*hw)
y2 = round(y1 + EnlargeFactor*hw)
ret = [(x1,y1)]
ret.append((x2, y2))
roi = clone[ret[0][1]:ret[1][1], ret[0][0]:ret[1][0]]
cv2.imshow("ROI", roi)
cv2.imwrite("CroppedImage.png", roi)
cv2.waitKey(0)
# close all open windows
cv2.destroyAllWindows()
print('Poly Rnn')
## Poly RNN
##
from PIL import Image
im = Image.open('CroppedImage.png')
width, height = im.size
print(width, height)
newsize = (224, 224)
im1 = im.resize(newsize)
im1 = im1.save("image_resize.png")
##
#External PATHS
PolyRNN_metagraph='./polyrnn/models/poly/polygonplusplus.ckpt.meta'
PolyRNN_checkpoint='./polyrnn/models/poly/polygonplusplus.ckpt'
EvalNet_checkpoint='./polyrnn/models/evalnet/evalnet.ckpt'
GGNN_metagraph='./polyrnn/models/ggnn/ggnn.ckpt.meta'
GGNN_checkpoint='./polyrnn/models/ggnn/ggnn.ckpt'
#Const
_BATCH_SIZE=1
_FIRST_TOP_K = 6
# Creating the graphs
evalGraph = tf.Graph()
polyGraph = tf.Graph()
ggnnGraph = tf.Graph()
#Initializing and restoring the evaluator net.
with evalGraph.as_default():
with tf.variable_scope("discriminator_network"):
evaluator = EvalNet(_BATCH_SIZE)
evaluator.build_graph()
saver = tf.train.Saver()
# Start session
evalSess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True
), graph=evalGraph)
saver.restore(evalSess, EvalNet_checkpoint)
#Initializing and restoring PolyRNN++
model = PolygonModel(PolyRNN_metagraph, polyGraph)
model.register_eval_fn(lambda input_: evaluator.do_test(evalSess, input_))
polySess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True
), graph=polyGraph)
model.saver.restore(polySess, PolyRNN_checkpoint)
#Initializing and restoring GGNN
ggnnGraph = tf.Graph()
ggnnModel = GGNNPolygonModel(GGNN_metagraph, ggnnGraph)
ggnnSess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True
), graph=ggnnGraph)
ggnnModel.saver.restore(ggnnSess,GGNN_checkpoint)
#INPUT IMG CROP (224x224x3) -> object should be centered
crop_path='image_resize.png'
#Testing
image_np = io.imread(crop_path)
image_np = image_np[:,:,:3]
image_np = np.expand_dims(image_np, axis=0)
preds = [model.do_test(polySess, image_np, top_k) for top_k in range(_FIRST_TOP_K)]
# sort predictions based on the eval score to pick the best.
preds = sorted(preds, key=lambda x: x['scores'][0], reverse=True)
#Visualizing TOP_K and scores
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2,3)
axes=np.array(axes).flatten()
[vis_polys(axes[i], image_np[0], np.array(pred['polys'][0]), title='score=%.2f' % pred['scores'][0]) for i,pred in enumerate(preds)]
plt.draw()
plt.pause(10) # pause how many seconds
plt.close()
#Let's run GGNN now on the bestPoly
bestPoly = preds[0]['polys'][0]
feature_indexs, poly, mask = utils.preprocess_ggnn_input(bestPoly)
preds_gnn = ggnnModel.do_test(ggnnSess, image_np, feature_indexs, poly, mask)
refinedPoly=preds_gnn['polys_ggnn']
#Visualize the final prediction
fig, ax = plt.subplots(1,1)
vis_polys(ax,image_np[0],refinedPoly[0], title='PolygonRNN++')
plt.show()
#python yolo_click_crop2.py --image image_0.jpg --yolo yolo-coco
# python yolo_click_crop2.py --image image_0.jpg --yolo yolo-coco