-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathpredict.py
87 lines (63 loc) · 2.42 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
components:
1. model
2. postpocessing:
a) thresholds for classes
b) averaging strategy: majority voting/averaging os probabilities
"""
import numpy as np
from kardioml.data.resample import Resampling
from postprocessing import PostProcessing
from data_generator import Dataset_train
from config import Model
class Predict():
def __init__(self):
#load the model
self.model = Model()
self.model.model_load("./inference_models/ecgnet_0_fold_0.6078759902401878.pt")
#load preprocessng pipeline
#load thresholds
self.postptocessing = PostProcessing(0)
# threshold = 0
# for fold in range(6):
# threshold += float(open(f"threshold_{fold}.txt", "r").read())/6
#
# self.postptocessing.threshold = threshold
def predict(self,signal,meta):
############## Preprocessing ##############
#downsampling
X_resampled = np.zeros((signal.shape[0] // 2, 12))
for i in range(12):
X_resampled[:, i] = self.resampling.downsample(signal[:, 0], order=2)
#apply preprocessing
signal = self.apply_amplitude_scaling(X=X_resampled,y=meta)
# padding
sig_length = 19000
if X_resampled.shape[0] < sig_length:
padding = np.zeros((sig_length - X_resampled.shape[0], X_resampled.shape[1]))
X = np.concatenate([X_resampled, padding], axis=0)
if X_resampled.shape[0] > sig_length:
X_resampled = X_resampled[:sig_length, :]
############## Predictions ##############
predict = self.model.predict(X_resampled)
############## Postprocessing ##############
predict = self.postptocessing.run(predict)
predict = list(predict)
if predict[4] > 0 or predict[18] > 0:
predict[4] = 1
predict[18] = 1
if predict[23] > 0 or predict[12] > 0:
predict[23] = 1
predict[12] = 1
if predict[26] > 0 or predict[13] > 0:
predict[26] = 1
predict[13] = 1
return predict
@staticmethod
def apply_amplitude_scaling(X, y):
"""Get rpeaks for each channel and scale waveform amplitude by median rpeak amplitude of lead I."""
if y['rpeaks']:
for channel_rpeaks in y['rpeaks']:
if channel_rpeaks:
return X / np.median(X[y['rpeaks'][0], 0])
return (X - X.mean()) / X.std()