-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpima_decisiontree notebook
1100 lines (1100 loc) · 161 KB
/
pima_decisiontree notebook
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"colab": {
"name": "pima_decisiontree.ipynb",
"provenance": [],
"collapsed_sections": []
}
},
"cells": [
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"import numpy as np \n",
"# for visualisation\n",
"import matplotlib.pyplot as plt \n",
"from matplotlib.colors import ListedColormap \n",
"from mlxtend.plotting import plot_confusion_matrix\n",
"import seaborn as sns\n",
"# for ml\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.tree import DecisionTreeClassifier \n",
"from sklearn import metrics\n",
"from sklearn.metrics import confusion_matrix "
],
"metadata": {
"id": "Bgx4Cw5SrwAz"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"### Describing the data"
],
"metadata": {
"id": "FZ9-QUo5r2dK"
}
},
{
"cell_type": "code",
"source": [
"# using pima dataset from kaggle\n",
"dataset= pd.read_csv('pima.csv') "
],
"metadata": {
"id": "P7SdSeA5sFlH"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# attributes of dataset\n",
"print(\"Describing pima dataset:\")\n",
"dataset.describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 317
},
"id": "r2HfeEDssV2A",
"outputId": "054680c2-0458-4917-a1ff-e9b4db941731"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Describing pima dataset:\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n",
"count 768.000000 768.000000 768.000000 768.000000 768.000000 \n",
"mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n",
"std 3.369578 31.972618 19.355807 15.952218 115.244002 \n",
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
"25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n",
"50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n",
"75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n",
"max 17.000000 199.000000 122.000000 99.000000 846.000000 \n",
"\n",
" BMI DiabetesPedigreeFunction Age Outcome \n",
"count 768.000000 768.000000 768.000000 768.000000 \n",
"mean 31.992578 0.471876 33.240885 0.348958 \n",
"std 7.884160 0.331329 11.760232 0.476951 \n",
"min 0.000000 0.078000 21.000000 0.000000 \n",
"25% 27.300000 0.243750 24.000000 0.000000 \n",
"50% 32.000000 0.372500 29.000000 0.000000 \n",
"75% 36.600000 0.626250 41.000000 1.000000 \n",
"max 67.100000 2.420000 81.000000 1.000000 "
],
"text/html": [
"\n",
" <div id=\"df-75561093-66f9-4447-bc89-601caa410e58\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pregnancies</th>\n",
" <th>Glucose</th>\n",
" <th>BloodPressure</th>\n",
" <th>SkinThickness</th>\n",
" <th>Insulin</th>\n",
" <th>BMI</th>\n",
" <th>DiabetesPedigreeFunction</th>\n",
" <th>Age</th>\n",
" <th>Outcome</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" <td>768.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>3.845052</td>\n",
" <td>120.894531</td>\n",
" <td>69.105469</td>\n",
" <td>20.536458</td>\n",
" <td>79.799479</td>\n",
" <td>31.992578</td>\n",
" <td>0.471876</td>\n",
" <td>33.240885</td>\n",
" <td>0.348958</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>3.369578</td>\n",
" <td>31.972618</td>\n",
" <td>19.355807</td>\n",
" <td>15.952218</td>\n",
" <td>115.244002</td>\n",
" <td>7.884160</td>\n",
" <td>0.331329</td>\n",
" <td>11.760232</td>\n",
" <td>0.476951</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.078000</td>\n",
" <td>21.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>1.000000</td>\n",
" <td>99.000000</td>\n",
" <td>62.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>27.300000</td>\n",
" <td>0.243750</td>\n",
" <td>24.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>3.000000</td>\n",
" <td>117.000000</td>\n",
" <td>72.000000</td>\n",
" <td>23.000000</td>\n",
" <td>30.500000</td>\n",
" <td>32.000000</td>\n",
" <td>0.372500</td>\n",
" <td>29.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>6.000000</td>\n",
" <td>140.250000</td>\n",
" <td>80.000000</td>\n",
" <td>32.000000</td>\n",
" <td>127.250000</td>\n",
" <td>36.600000</td>\n",
" <td>0.626250</td>\n",
" <td>41.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>17.000000</td>\n",
" <td>199.000000</td>\n",
" <td>122.000000</td>\n",
" <td>99.000000</td>\n",
" <td>846.000000</td>\n",
" <td>67.100000</td>\n",
" <td>2.420000</td>\n",
" <td>81.000000</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-75561093-66f9-4447-bc89-601caa410e58')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-75561093-66f9-4447-bc89-601caa410e58 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-75561093-66f9-4447-bc89-601caa410e58');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"source": [
"print(\"Correlations in pima dataset:\")\n",
"dataset.corr()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 349
},
"id": "4zLkudb8sbSl",
"outputId": "f067d4c5-0d34-4fae-e4e5-4c097dc61113"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Correlations in pima dataset:\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" Pregnancies Glucose BloodPressure SkinThickness \\\n",
"Pregnancies 1.000000 0.129459 0.141282 -0.081672 \n",
"Glucose 0.129459 1.000000 0.152590 0.057328 \n",
"BloodPressure 0.141282 0.152590 1.000000 0.207371 \n",
"SkinThickness -0.081672 0.057328 0.207371 1.000000 \n",
"Insulin -0.073535 0.331357 0.088933 0.436783 \n",
"BMI 0.017683 0.221071 0.281805 0.392573 \n",
"DiabetesPedigreeFunction -0.033523 0.137337 0.041265 0.183928 \n",
"Age 0.544341 0.263514 0.239528 -0.113970 \n",
"Outcome 0.221898 0.466581 0.065068 0.074752 \n",
"\n",
" Insulin BMI DiabetesPedigreeFunction \\\n",
"Pregnancies -0.073535 0.017683 -0.033523 \n",
"Glucose 0.331357 0.221071 0.137337 \n",
"BloodPressure 0.088933 0.281805 0.041265 \n",
"SkinThickness 0.436783 0.392573 0.183928 \n",
"Insulin 1.000000 0.197859 0.185071 \n",
"BMI 0.197859 1.000000 0.140647 \n",
"DiabetesPedigreeFunction 0.185071 0.140647 1.000000 \n",
"Age -0.042163 0.036242 0.033561 \n",
"Outcome 0.130548 0.292695 0.173844 \n",
"\n",
" Age Outcome \n",
"Pregnancies 0.544341 0.221898 \n",
"Glucose 0.263514 0.466581 \n",
"BloodPressure 0.239528 0.065068 \n",
"SkinThickness -0.113970 0.074752 \n",
"Insulin -0.042163 0.130548 \n",
"BMI 0.036242 0.292695 \n",
"DiabetesPedigreeFunction 0.033561 0.173844 \n",
"Age 1.000000 0.238356 \n",
"Outcome 0.238356 1.000000 "
],
"text/html": [
"\n",
" <div id=\"df-e7eaa7c0-59ac-47b6-b46d-98b9f1985ca0\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Pregnancies</th>\n",
" <th>Glucose</th>\n",
" <th>BloodPressure</th>\n",
" <th>SkinThickness</th>\n",
" <th>Insulin</th>\n",
" <th>BMI</th>\n",
" <th>DiabetesPedigreeFunction</th>\n",
" <th>Age</th>\n",
" <th>Outcome</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Pregnancies</th>\n",
" <td>1.000000</td>\n",
" <td>0.129459</td>\n",
" <td>0.141282</td>\n",
" <td>-0.081672</td>\n",
" <td>-0.073535</td>\n",
" <td>0.017683</td>\n",
" <td>-0.033523</td>\n",
" <td>0.544341</td>\n",
" <td>0.221898</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Glucose</th>\n",
" <td>0.129459</td>\n",
" <td>1.000000</td>\n",
" <td>0.152590</td>\n",
" <td>0.057328</td>\n",
" <td>0.331357</td>\n",
" <td>0.221071</td>\n",
" <td>0.137337</td>\n",
" <td>0.263514</td>\n",
" <td>0.466581</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BloodPressure</th>\n",
" <td>0.141282</td>\n",
" <td>0.152590</td>\n",
" <td>1.000000</td>\n",
" <td>0.207371</td>\n",
" <td>0.088933</td>\n",
" <td>0.281805</td>\n",
" <td>0.041265</td>\n",
" <td>0.239528</td>\n",
" <td>0.065068</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SkinThickness</th>\n",
" <td>-0.081672</td>\n",
" <td>0.057328</td>\n",
" <td>0.207371</td>\n",
" <td>1.000000</td>\n",
" <td>0.436783</td>\n",
" <td>0.392573</td>\n",
" <td>0.183928</td>\n",
" <td>-0.113970</td>\n",
" <td>0.074752</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Insulin</th>\n",
" <td>-0.073535</td>\n",
" <td>0.331357</td>\n",
" <td>0.088933</td>\n",
" <td>0.436783</td>\n",
" <td>1.000000</td>\n",
" <td>0.197859</td>\n",
" <td>0.185071</td>\n",
" <td>-0.042163</td>\n",
" <td>0.130548</td>\n",
" </tr>\n",
" <tr>\n",
" <th>BMI</th>\n",
" <td>0.017683</td>\n",
" <td>0.221071</td>\n",
" <td>0.281805</td>\n",
" <td>0.392573</td>\n",
" <td>0.197859</td>\n",
" <td>1.000000</td>\n",
" <td>0.140647</td>\n",
" <td>0.036242</td>\n",
" <td>0.292695</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DiabetesPedigreeFunction</th>\n",
" <td>-0.033523</td>\n",
" <td>0.137337</td>\n",
" <td>0.041265</td>\n",
" <td>0.183928</td>\n",
" <td>0.185071</td>\n",
" <td>0.140647</td>\n",
" <td>1.000000</td>\n",
" <td>0.033561</td>\n",
" <td>0.173844</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Age</th>\n",
" <td>0.544341</td>\n",
" <td>0.263514</td>\n",
" <td>0.239528</td>\n",
" <td>-0.113970</td>\n",
" <td>-0.042163</td>\n",
" <td>0.036242</td>\n",
" <td>0.033561</td>\n",
" <td>1.000000</td>\n",
" <td>0.238356</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Outcome</th>\n",
" <td>0.221898</td>\n",
" <td>0.466581</td>\n",
" <td>0.065068</td>\n",
" <td>0.074752</td>\n",
" <td>0.130548</td>\n",
" <td>0.292695</td>\n",
" <td>0.173844</td>\n",
" <td>0.238356</td>\n",
" <td>1.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e7eaa7c0-59ac-47b6-b46d-98b9f1985ca0')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e7eaa7c0-59ac-47b6-b46d-98b9f1985ca0 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e7eaa7c0-59ac-47b6-b46d-98b9f1985ca0');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"source": [
"dataset.hist(figsize=(10,10))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 781
},
"id": "OwA1ibOosnNP",
"outputId": "a3e070e0-ee31-4db4-b78a-4162f8c15d18"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7fcf5171e4d0>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf51be56d0>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf51685f10>],\n",
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fcf51647550>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf5167db50>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf515c0190>],\n",
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7fcf515f8810>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf515aed50>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7fcf515aed90>]],\n",
" dtype=object)"
]
},
"metadata": {},
"execution_count": 11
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 720x720 with 9 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAJOCAYAAABvHKlnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdfZhcZZnv+++PFyEGJMRoGyBjo0TdYDRiBlC4nCi+QECD57hjGLYkyEx0hKNse19DYM7Zogx7R8fAACoaBiZBkZCtspMBRgkZWjaj4SUYCQGRCGFIDIm8hQQU7XCfP9ZTsGiqu6ura1Wtqv59rquurnrWqlp3rVpP113reVmKCMzMzMys8XZrdQBmZmZmncqJlpmZmVlBnGiZmZmZFcSJlpmZmVlBnGiZmZmZFcSJlpmZmVlBnGgZAJJ2SnpTq+Mwq0bSYkl/3+o4zBqlqGNa0nmSvtfo17X6OdEaBkkbJf0+JSVbU0XZp9VxNUJE7BMRD7U6Dhu9JM2WdLukZyVtS/c/J0mtjs2sHv2+M56SdIOkSU3cfrekSNvfmeKZ36ztW8aJ1vB9NCL2AQ4HpgH/b36hpD1aEpVZG5PUA1wM/APwBqAL+CxwNPCqFoZmNlKV74yJwFbg0hbEMC7FcDLw3yUd13+FVn93KdOROUlHvqlmiIjNwL8Cb0+/GM6Q9CDwIICkEyWtlfS0pJ9JekfluZIOl/QLSTsk/S9J11ZOIUuaLmmTpJ70q36LpNNyzz0hPfcZSY9KOi+3rPLrZY6k/5D0uKS/yy3fXdK5kn6Ttr2m8usqPe+QdH8vSV9Pr7FV0rcljUnLJki6Pr2vJyX9n06tHNYckvYDvgJ8LiJ+EBE7IvOLiDglIp7vt/5cSbf1K8sfv2MkLZT0iKTtkm7LHb8fk7Q+Hb+9kv5T7jXOlrQ51Y0HJB2byneTND/VmyckLZM0vuj9Yp0lIv4A/AA4tNpySX8taUP6v7pC0gG5Ze+VdGc6nu+U9N7csoMl/TQdtyuBCYPE8HNgPdn3VuW75mxJjwH/PNixLmlvSd9L5U+nOLrSsrmSHkoxPCzplFT+smbM3HfUHulxr6QLJP078BzwJklvk7Qy7YcHJM2qd5+Xhb8g65QSlBnAL1LRScCRwKGS3gVcCXwGeC3wHWBFSmBeBVwHLAbGA9cAH+/38m8A9gMOBE4Hvilp/7TsWeBUYBxwAvA3kk7q9/xjgLcCx5L9eql8mXyR7BfNDOA1wKfJDu7+FgBvAaYCh6Q4/nta1gNsAl5HdtbhXMDXcbKReA+wF7C8Qa/3deDdwHvJ6tjfAi9IegtZfTuL7Pi9EfgXSa+S9FbgTODPI2Jf4CPAxvR6/w9Z/f4L4ADgKeCbDYrVRglJrwY+CayusuwDwP8EZpGd+XoEWJqWjQduAC4h+z65ELhB0mvT078PrCFLsM4H5gywfUk6GjiMl7633kBWR94IzGPwY30O2ffSpBTHZ4HfSxqbYjs+1Z33AmuHsWs+lba9L/A7YGV6T68HZgPfklQ1OW0bEeFbjTeyf7w7gafJKsK3gDFkicYHcutdBpzf77kPkB287wM2A8otuw34+3R/OvB7YI/c8m3AUQPE9I/ARel+d4rloNzyO4DZuRhmDvA6QZZUiSyZe3Nu2XuAh9P9r5B9IR7S6s/Dt864Af8FeKxf2c9SPft9qjOLc3VkLnBbv/Urx+9u6TnvrLKd/w9Ylnu8W6qL09NztwEfBPbs97z7gWNzjycCf8rXUd98q3br953xJ+C3wJS0LH9MXwF8Lfe8fdL63WSJyB39XvfnqR78GdAHjM0t+z7wvXS/8p3wNFnSdD/w+bRsOvBHYO/ccwc81sl+mP8MeEe/WMam1/+/gTH9lp1XiaVfPHukx73AV3LLPwn8n36v8R3gS63+LEdy8xmt4TspIsZFxBsj4nMR8ftU/mhunTcCPen06tOSnib7FXBAum2OdARVeS7AExHRl3v8HFnFQ9KRkm6R9DtJ28l+VfQ/VfxYteemGH4zxPt7HfBqYE0u9h+ncsj60GwAbkqnit2x0kbqCWCCcn1EIuK9ETEuLRvO/6kJwN5UP84PIPuBVNnGC2R178CI2EB2pus8YJukpbmmmzcC1+Xqw/3ALrIzumZDOSkdy3uTnTX9qaQ39Fun/7G5k+zYP7D/suSR3LKnIuLZfsv6mxAR+0fEf4qIS3Llv4usSbNisGP9u8BPgKWSfivpa5L2TNv+JNl30RZlHf7fNuReeUn/784j+313nkJ25q1tOdFqnP6J0wUpIavcXh0R1wBbgAOll42kGs4olO8DK4BJEbEf8G2ys1C1eBR48xDrPE52RuCwXOz7RdaRksj6z/RExJuAjwFfrPRlMavTz4HngZk1rv8s2Y8BAPp9aT0O/IHqx/lvyf6RV54nsrq3GSAivh8Rx6R1AvhqWvVRsmaRfH3eO7J+mmY1iYhdEfEjssTlmH6L+x+bY8ma5zb3X5b8WVq2Bdg/rZ9fVnNY/R4PeKxHxJ8i4ssRcShZ8+CJZN1YiIifRMSHyM6A/Qq4PL3ey+oq1ROm/t+dP+23/X0i4m+G8Z5Kx4lWMS4HPpvOPknSWGWd2Pcl+1LZBZwpaQ9JM4EjhvHa+wJPRsQfJB0B/OUwnvtPwPmSJqe43pFr5wde/JV/OXCRpNcDSDpQ0kfS/RMlHZK+pLan9/LCMGIwe5mIeBr4MllfjE9I2jd1yp1K1izR3y+BwyRNlbQ32Vmoymu9QNY/8kJJBygbAPIeSXsBy4ATJB0raU+y/obPAz+T9FZJH0jr/YHsx0bluP42cIGkNwJIel2qt2Y1S/9zZwL7k50pyrsGOC0d03sB/wO4PSI2kvUlfIukv0zfGZ8k61B/fUQ8AtwFfDn1NTwG+OgIwhzwWJf0fklTJO0OPEPWpPiCpC5JM1Oy9zxZU2ml7qwF3ifpz5QNejlniO1fn97rpyTtmW5/nutn3JacaBUgIu4C/hr4Blm7+Aay9nQi4o/A/0XWyf1psv4p15MdoLX4HPAVSTvIOqgvG0ZoF6b1byKrKFeQ9THr7+wU82pJzwA3k3WuB5icHu8kSxq/FRG3DCMGs1eIiK+RDdb4W7Ih8FvJ+macTdYvJL/ur8n6Ct5MNsr3ZSMQgf8GrAPuBJ4kOzO1W0Q8QFbfLiU78/VRsqH3fyTrjL8glT9G1hG38qVwMdlZ5JtSvVtNNvDFrBb/Imkn2f/cC4A5EbE+v0JE3EzWh/CHZGep3kzWEZyIeILs7FEPWXPi3wInRsTj6el/SXY8Pgl8CbhqBLEOdqy/gWzU5DNkieJPyZoTdyOru79NMfwF8Dcp9pXAtcA9ZB32rx9s4xGxA/hweu+/JauLXyWrn21LL+8qZK0g6Xbg2xHxz62OxczMzBrHZ7RaQNJfSHpDOg08B3gHWYdzMzMz6yCexbw13krWhDcWeAj4RERsaW1IZmZm1mhuOjQzMzMriJsOzczMzApSiqbDCRMmRHd3d9Vlzz77LGPHVhvhXS7tEGc7xAjFxrlmzZrHI+J1Q69ZPu1ST8oUC5QrnnaJpV3rSbvUkSL5fTbHsOpIq6emjwje/e53x0BuueWWAZeVSTvE2Q4xRhQbJ3BXlOCYr+fWLvWkTLFElCuedomlXetJu9SRIvl9Nsdw6siQTYeSJqVLvtyn7Kr3X0jl5ym70v3adJuRe845yq5C/kBlokszMzOz0aaWpsM+oCci7k4zm6+RtDItuygivp5fWdlVtmeTXSH8AOBmSW+JiF2NDNzMzMys7IY8oxURWyLi7nR/B9mMsAcO8pSZwNKIeD4iHiabYXw4l5gxMzMz6wjD6gwvqRt4F3A7cDTZ9fpOJbvWUk9EPEWWhK3OPW0TVRIzSfOAeQBdXV309vZW3ebOnTsHXFYm7RBnO8QI7ROnmZnZUGpOtCTtQ3YdprMi4hlJlwHnk115+3xgIfDpWl8vIhYBiwCmTZsW06dPr7peb28vAy0rk3aIsx1ihPaJ08zMbCg1JVrpSvc/BK6OiB8BRMTW3PLLeelikZuBSbmnH5TK6rJu83bmzr9h2M/buOCEejdpZh2ie/4N9EzpG/b/EP//sNGku47vWHA9qVUtow4FXAHcHxEX5son5lb7OHBvur8CmC1pL0kHA5OBOxoXspmZmVl7qOWM1tHAp4B1ktamsnOBkyVNJWs63Ah8BiAi1ktaBtxHNmLxDI84NDMzs9FoyEQrIm4DVGXRjYM85wLgghHEZWZmHUTSJOAqoIvsB/qiiLhY0nnAXwO/S6ueGxE3puecA5wO7AI+HxE/aXrgZiNUikvwmJlZx/OcjDYq+aLSZg0wyBUUxktaKenB9Hf/VC5Jl6QrKNwj6fDWvgOzYnlORhutfEbLrDEG+rU+F1gVEQskzQfmA2cDx5MNFJkMHAlclv6adTzPyVicet5nz5S+urbVyv3ZTp+nEy2zBoiILcCWdH+HpMqv9ZnA9LTaEqCXLNGaCVyVLk66WtI4SRPT65h1LM/JWKx63mc9UygBbDxleNtppHb6PJ1omTVYv1/rXbnk6TGyjsCQJWGP5p5W+bX+skSrHX+tlymWnil9dI0Z/i/2ouIv075pRSytnJPRrFWcaJk1UJVf6y8ui4iQFMN5vXb8tV6mWOamCUsXrhvev7qifqmXad80O5bB5mTM/RjpPyfj9yVdSNYZ3nMyWltyomXWINV+rQNbK18kaZLfbancv9ZttPGcjB3GM8rXxomWWQMM9Gud7Ff5HGBB+rs8V36mpKVkneC3u3+WdTLPyWijlRMts8YY6Nf6AmCZpNOBR4BZadmNwAyyIevPAac1N1wzM2sGJ1pmDTDIr3WAY6usH8AZhQZlZmYt5wlLzczMzAriRMvMzMysIE60zMzMzAriRMvMzMysIE60zMzMzAriRMvMzMysIE60zMzMzAriRMvMzMysIE60zMzMzAriRMvMzMysIEMmWpImSbpF0n2S1kv6QiofL2mlpAfT3/1TuSRdImmDpHskHV70mzAzMzMro1rOaPUBPRFxKHAUcIakQ4H5wKqImAysSo8Bjgcmp9s84LKGR21mZmbWBoZMtCJiS0Tcne7vAO4HDgRmAkvSakuAk9L9mcBVkVkNjJM0seGRm5mZmZXcHsNZWVI38C7gdqArIrakRY8BXen+gcCjuadtSmVbcmVImkd2xouuri56e3urbrNrDPRM6RtOmAADvl5Rdu7c2fRtDlc7xAjtE6eZmdlQak60JO0D/BA4KyKekfTisogISTGcDUfEImARwLRp02L69OlV17v06uUsXDesfBCAjadUf72i9Pb2MtB7KIt2iBHaJ04zM7Oh1DTqUNKeZEnW1RHxo1S8tdIkmP5uS+WbgUm5px+UyszMzMxGlVpGHQq4Arg/Ii7MLVoBzEn35wDLc+WnptGHRwHbc02MZmZmZqNGLWe0jgY+BXxA0tp0mwEsAD4k6UHgg+kxwI3AQ8AG4HLgc40P28zM2omnCrLRasjOTxFxG6ABFh9bZf0AzhhhXGZm1lkqUwXdLWlfYI2klcBcsqmCFkiaTzZV0Nm8fKqgI8mmCjqyJZGbjcDwe5mbmXW47vk31PW8jQtOaHAknSN1IdmS7u+QlJ8qaHpabQnQS5ZovThVELBa0jhJE90VxdqNEy0zM2uqVkwVNFqmjannfdYzhdJINOJzaKfP04mWmZk1TaumChot08bU8z7n1nkGt16NmH6pnT5PX1TazMyawlMF2WjkRMvMzArnqYJstHLToZmVXr2d061UKlMFrZO0NpWdSzY10DJJpwOPALPSshuBGWRTBT0HnNbccM0aw4mWWQNIuhI4EdgWEW9PZecBfw38Lq12bkTcmJadA5wO7AI+HxE/aXrQZk3kqYJstOrYRMvDs63JFgPfAK7qV35RRHw9XyDpUGA2cBhwAHCzpLdExK5mBGpmZs3jPlpmDRARtwJP1rj6TGBpRDwfEQ+TNY0cUVhwZmbWMh17RsusJM6UdCpwF9ms2E+RzQW0OrdOZX6gV2jHOYKKiGUk8/x0jWnePEFDve9O/5zM7JWcaJkV5zLgfCDS34XAp4fzAu04R1ARsYxknp+eKX0sXNecf3VDzQ/U6Z+Tmb2Smw7NChIRWyNiV0S8QHaB9UrzoOcHMjMbJZxomRWkMglj8nHg3nR/BTBb0l6SDia7aO4dzY7PzMyK56ZDswaQdA3ZhXEnSNoEfAmYLmkqWdPhRuAzABGxXtIy4D6gDzjDIw7NzDqTEy2zBoiIk6sUXzHI+hcAFxQXkZmZlYGbDs3MzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBDJlqSrpS0TdK9ubLzJG2WtDbdZuSWnSNpg6QHJH2kqMDNzMzMyq6WM1qLgeOqlF8UEVPT7UYASYcCs4HD0nO+JWn3RgVrZmZm1k6GTLQi4lbgyRpfbyawNCKej4iHgQ28dH03MzMzs1FlJDPDnynpVOAuoCcingIOBFbn1tmUyl5B0jxgHkBXVxe9vb1VN9I1Bnqm9I0gzOEZKI6h7Ny5s+7nNks7xAjtE6eZmdlQ6k20LgPOJ7uG2/nAQuDTw3mBiFgELAKYNm1aTJ8+vep6l169nIXrmneloI2nVI9jKL29vQz0HsqiHWKE9onTzMxsKHWNOoyIrRGxKyJeAC7npebBzcCk3KoHpTIzMxvFPLDKRqu6Ei1JE3MPPw5UKs4KYLakvSQdDEwG7hhZiGZm1gEW44FVNgoN2SYn6RpgOjBB0ibgS8B0SVPJmg43Ap8BiIj1kpYB9wF9wBkRsauY0M3MrF1ExK2Sumtc/cWBVcDDkioDq35eUHhmhRky0YqIk6sUXzHI+hcAF4wkKDMzGzWaMrBqtAyyqed9NnPAGdQ/6CyvnT7P5vUyNzMze7mmDawaLYNs6nmfc+ffUEwwA6h30FleO32evgSPmZm1hAdW2WjgRMvMzFrCA6tsNHDToZmZFc4Dq2y0cqJlZmaF88AqG63cdGhmZmZWECdaZmZmZgVxomVmZmZWEPfR6qe7zvlEeqb0Mb2xoZiZmVmb8xktMzMzs4I40TJrAElXStom6d5c2XhJKyU9mP7un8ol6RJJGyTdI+nw1kVuZmZFcqJl1hiLgeP6lc0HVkXEZGBVegxwPNkEjJPJrtF2WZNiNDOzJnOiZdYAEXEr8GS/4pnAknR/CXBSrvyqyKwGxvWbIdvMzDqEO8ObFacrIrak+48BXen+gcCjufU2pbIt9CNpHtlZL7q6uga8Wn2ZrmRfRCw9U/rqfm7XmJE9fziGet+d/jmZ2Ss50TJrgogISVHH8xYBiwCmTZsWA12tvkxXsi8ilrl1jgaGLMlauK45/+o2njJ90OWd/jmZ2Su56dCsOFsrTYLp77ZUvhmYlFvvoFRmZmYdxme0zIqzApgDLEh/l+fKz5S0FDgS2J5rYrQ2NtQ8fD1T+qqendu44ISiQjKzFnOiZdYAkq4BpgMTJG0CvkSWYC2TdDrwCDArrX4jMAPYADwHnNb0gM3MrCmcaJk1QEScPMCiY6usG8AZxUZkZmZl4D5aZmZmZgUZMtHyjNdmZmZm9anljNZiPOO1mZmZ2bAN2UcrIm6V1N2veCZZx1/IZrzuBc4mN+M1sFrSOEkTPaLKzMysWN3zbxhwZKu1Tr2d4Zs243UzZ3Ueia4xQ88K3WrtMhN0u8RpZrWTdCVwIrAtIt6eysYD1wLdwEZgVkQ8JUnAxWSjc58D5kbE3a2I22ykRjzqsOgZry+9ennTZnUeiZ4pfcwq+SzL7TITdLvEaWbDshj4BnBVrqzSDWWBpPnp8dm8vBvKkWTdUI5sarRmDVLvqEPPeG1mZjXzhddttKr3VJFnvDYzs5EalRdeL0rPlL626G7TiM+hnT7PIRMtz3htZmZFG00XXi/K3NQZvuzdbYa6+Hot2unzrGXUoWe8NjOzImytjEx3NxTrVJ4Z3szMWqXSDQVe2Q3l1DQJ9lG4G4q1sXKfXzQzs47gbig2WjnRMjOzwrkbio1Wbjo0MzMzK4jPaJVAd52XS9i44IQGR2JmZlas0fad5zNaZmZmZgVxomVmZmZWECdaZmZmZgVxomVmZmZWECdaZmZmZgVxomVmZmZWECdaZmZmZgVxomVmZmZWECdaZmZmZgXxzPBmZi1W70zZ0L6zZZuNFk60zAomaSOwA9gF9EXENEnjgWuBbmAjMCsinmpVjGZmVgw3HZo1x/sjYmpETEuP5wOrImIysCo9NjOzDuNEy6w1ZgJL0v0lwEktjMXMzAripkOz4gVwk6QAvhMRi4CuiNiSlj8GdFV7oqR5wDyArq4uent7q25g586dAy5rtiJi6ZnSV/dzu8aM7PmNVEQs9e7rMh0zZp3MiZZZ8Y6JiM2SXg+slPSr/MKIiJSEvUJKyhYBTJs2LaZPn151A729vQy0rNmKiGXuCDqL90zpY+G6cvyrKyKWjadMr+t5ZTpmzDrZiJoOJW2UtE7SWkl3pbLxklZKejD93b8xoZq1p4jYnP5uA64DjgC2SpoIkP5ua12EZmZWlEb8tHp/RDyee1zp5LtA0vz0+OwGbMes7UgaC+wWETvS/Q8DXwFWAHOABenv8tZFae2s3qkhFh83tsGRmFk1RZxPnwlMT/eXAL040SrEcP/B9kzpY+78GzzvTnN1AddJgqy+fT8ifizpTmCZpNOBR4BZLYzRrKU8BYp1spEmWoV38i1TR9bBdI2BS6+u76REz5QGBzOAyr4sewfYTuqkGxEPAe+sUv4EcGzzIzIrLbeOWEcaaaJVeCffS69eXpqOrIMpU4fbgVRirLfzbLO4k66Z4dYR6xAjygzynXwlvayTb0RscSdfMzOrwaiaAqUoPVP62qYVqB75z6+dPs+6Ey138jUzswYZVVOgFGXu/BvaonWlXvnWmHb6PEfyabiTr5mZjZhbR6yT1Z1ouZOvmZmNlFtHrNN15vlFMzNrF24dsY7mRMvMmqbeyTWtc7l1xDrdiC7BY2ZmZmYDc6JlZmZmVhA3HZqZWcdbt3k7c+touvYly2ykfEbLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCCeR8tqVu/lUzwPjZmZjVY+o2VmZmZWECdaZmZmZgVx06GZmZmVXr77Ss+UvpovqdTq7itOtMzMzEqk3v6wVk5OtEYhV2IzM7PmcB8tMzMzs4I40TIzMzMrSGFNh5KOAy4Gdgf+KSIWFLUts3bUyDqybvP2mjuG5tXbSXSw5ufhdFI1G4q/S2ykWj0HZCGJlqTdgW8CHwI2AXdKWhER9xWxPSu34R7klS/qVo8UKZLriNnQXE+sExR1RusIYENEPAQgaSkwE3DlMMu4jpgNrW3riQcdWYUiovEvKn0COC4i/io9/hRwZEScmVtnHjAvPXwr8MAALzcBeLzhQTZeO8TZDjFCsXG+MSJeV9Br16yWOpLK27GelCkWKFc87RJL29STNq0jRfL7bI6a60jLpneIiEXAoqHWk3RXRExrQkgj0g5xtkOM0D5xNkM71pMyxQLlisexNF471pEi+X2WT1GjDjcDk3KPD0plZpZxHTEbmuuJtb2iEq07gcmSDpb0KmA2sKKgbZm1I9cRs6G5nljbK6TpMCL6JJ0J/IRsSO6VEbG+zpcb8pRwSbRDnO0QI7RPnHVrcB2Bcu2zMsUC5YrHsQzDKP0uGSm/z5IppDO8mZmZmXlmeDMzM7PCONEyMzMzK0ipEy1Jx0l6QNIGSfNbHU81kjZKWidpraS7Wh1PhaQrJW2TdG+ubLyklZIeTH/3L2GM50nanPbnWkkzWhlj2ZWhjlSrA8061oZznCtzSdpX90g6vEnxDHhMSzonxfOApI80OJZJkm6RdJ+k9ZK+kMpbtn9apQz1pAitrHtFKlu9HqnSJlp66dILxwOHAidLOrS1UQ3o/RExtWRzeiwGjutXNh9YFRGTgVXpcSst5pUxAlyU9ufUiLixyTG1jZLVkf51oFnH2mJqP86PByan2zzgsibFA1WO6fRZzQYOS8/5VvpMG6UP6ImIQ4GjgDPSNlu5f5quZPWkCK2qe0VaTLnq9YiUNtEid+mFiPgjULn0gtUgIm4FnuxXPBNYku4vAU5qalD9DBCj1a7MdaQpx9owj/OZwFWRWQ2MkzSxCfEMZCawNCKej4iHgQ1kn2mjYtkSEXen+zuA+4EDaeH+aZEy15MilOr/fD3KVq9HqsyJ1oHAo7nHm1JZ2QRwk6Q1yi4FUWZdEbEl3X8M6GplMIM4M50CvrIdT3s3UVnqSLU60MpjbaBtt3J/VTummxaPpG7gXcDtlHP/FKlT3xeUr+4VqW2P2zInWu3imIg4nOz05RmS3tfqgGoR2bweZZzb4zLgzcBUYAuwsLXhWA0GrQOtPNZKcpy39JiWtA/wQ+CsiHgmv6wk+8fqV9q6V6R2e19lTrTa4tILEbE5/d0GXEcDT/0XYGvllGr6u63F8bxCRGyNiF0R8QJwOeXen61WijoyQB1o5bE20LZbsr8GOaYLj0fSnmRJ1tUR8aNUXKr90wSd+r7KWPeK1LbHbZkTrdJfekHSWEn7Vu4DHwbuHfxZLbUCmJPuzwGWtzCWqvq1rX+ccu/PVmt5HRmkDrTyWBto2yuAU9MopaOA7bmmiMIMckyvAGZL2kvSwWSdee9o4HYFXAHcHxEX5haVav80QcvrSRFKWveK1L7HbUSU9gbMAH4N/Ab4u1bHUyW+NwG/TLf1ZYoRuIasmeJPZG3WpwOvJRut8SBwMzC+hDF+F1gH3ENWgSa2el+W+dbqOjJQHWjWsTac4xwQ2eiz36RjbFqT4hnwmAb+LsXzAHB8g2M5hqx55R5gbbrNaOX+adWt1fWkoPfU0rpX8HsrVb0e6c2X4DEzMzMrSJmbDs3MzMzamhMtMzMzs4I40TIzMzMriBMtMzMzs4I40TIzMzMriBMtMzMzs4I40TIzMzMriBMtMzMzs4I40TIzMzMriBMtMzMzs4I40TIzMzMriBMtMzMzs4I40TIzMzMriBOtYZI0V9JtAyw7RdJNDdpOSDpkJFx7CMYAACAASURBVNuRdJ6k7zUiHrNOIqlX0l+l+w2rt2Zm/TnRGoCkYyT9TNJ2SU9K+ndJfz7YcyLi6oj4cA2vfa6knen2B0m7co/XD/X8Wrdj1q4kbZT0wWZsy/XJOlWqR79P3y1PSbpB0qS0bHH6QT+z33MuSuVz0+MBTy5YbZxoVSHpNcD1wKXAeOBA4MvA8414/Yj4HxGxT0TsA3wW+HnlcUQc1ohtmJmZAR9N3zUTga1k32sVvwZOrTyQtAcwC/hNUyPscE60qnsLQERcExG7IuL3EXFTRNzTf0VJ/yDpNkn79c/806+Cz0p6UNLTkr4pScOI44PVnltlO4dJWpnOvG2VdG6VOPeUdI2kH0p6VWpWXCbpKkk7JK2XNC23/gFp3d9JeljS53PLjpB0l6Rn0vYuTOV7S/qepCdSzHdK6hrG+zV7mcqxLunr6Rf5w5KO77f8oXQMPyzplFT+smZzSd2pPu4x0DZyj0dab81KJyL+APwAODRX/C/AMZL2T4+PA+4BHmtyeB3NiVZ1vwZ2SVoi6fjcQfgiSbtJuhx4B/DhiNg+wGudCPx5Wm8W8JFhxDHkcyXtC9wM/Bg4ADgEWNVvnTHA/yY7IzcrIv6YFn0MWAqMA1YA36i8N7IK+Euys3nHAmdJqmz/YuDiiHgN8GZgWSqfA+wHTAJeS3a27vfDeL9m1RwJPABMAL4GXKHMWOAS4PiI2Bd4L7C2QdscSb01Kx1JrwY+CazOFf8BWA7MTo9PBa5qcmgdz4lWFRHxDHAMEMDlwO8krcidndkTuIasWfGjEfHcIC+3ICKejoj/AG4Bpg4jlFqeeyLwWEQsjIg/RMSOiLg9t/w1ZEnYb4DTImJXbtltEXFjKvsu8M5U/ufA6yLiKxHxx4h4KO2HSmX8E3CIpAkRsTMiVufKXwscks4Erkn70mwkHomIy9NxuoSsCaRSF18A3i5pTERsiYgh+zjWaCT11qxM/rekp4HtwIeAf+i3/CrgVEnjgL8g+1FuDeREawARcX9EzI2Ig4C3k50t+se0+BBgJvDl3NmhgeRPwT4H7DOMMGp57iQGb08/iuxX+YKIiCFef+/UtPJG4IDUbPJ0qqTn8tKX2+lkzau/Ss2DJ6by7wI/AZZK+q2kr0nac+i3aTaoF4/T3I+afSLiWbJf6J8FtqSOvm9r9DYZfr01K5OTImIcsDdwJvBTSW+oLIyI24DXAX8HXB8RboVoMCdaNYiIXwGLyRIugPuB04B/lfTWVsWVPAq8aZDlNwH/E1g1jP5SjwIPR8S43G3fiJgBEBEPRsTJwOuBrwI/kDQ2Iv4UEV+OiEPJmnFOJNfR0qzRIuInEfEhsrNcvyI78wrwLPDq3Kpv6P9cs9EktTL8CNhF1mKT9z2gBzcbFsKJVhWS3iapR9JB6fEk4GRybdsRcQ3ZWZ6bJb25NZEC2ejIiZLOkrSXpH0lHZlfISK+BnyfLNmaUMNr3gHskHS2pDGSdpf0dqXpLST9F0mvi4gXgKfTc16Q9H5JUyTtDjxD1pT4QqPeqFmepC5JM1NfreeBnbx0vK0F3ifpzyTtB5zTqjjNyiD1a5wJ7E92siDvErJmxVubHtgo4ESruh1kHXBvl/QsWYJ1L1nG/6KIWAJ8Bfg3Sd1NjrESww6yCvJRsuaOB4H3V1nvfLK295sljR/iNXeRnY2aCjwMPA78E1lHd8hGpqyXtJOsY/zsdLr5DWSjWp4hq8g/JWtONCvCbsAXgd8CT5L1L/kbgIhYCVxLNoJqDdkPErPR6F/S/+pngAuAOf37MkbEkxGxqkr3EmsAeb+amZmZFcNntMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzahKQftzoGGx18rJk1zisusNoKEyZMiO7u7qrLnn32WcaOHdvcgAZRpnjKFAu0Rzxr1qx5PCJeV8T2JG0kmxpkF9AXEdPSVBrXAt3ARrJrTT6VLlJ8MTCDbObxuRFx92Cv/5rXvOYj06ZNqzpMuAz73jGUK44RxtCWl85qp++SgTjOxioqzmF9l0REy2/vfve7YyC33HLLgMtaoUzxlCmWiPaIB7grCjqOyRKpCf3KvgbMT/fnA19N92cA/wqI7DJJtw/1+mWvJ47hJWWIYyQxFFlPiryVvY7UwnE2VlFxDqeOuOnQrFgzyS6ETPp7Uq78qlRnVwPjJE1sRYBmZlacUjQdmnWIAG6SFMB3ImIR0BURW9Lyx3jpwtwHkl1TsmJTKtuSK0PSPGAeQFdXF729vVU3vHPnzgGXNYtjKFccZYjBzJxomTXSMRGxWdLrgZWSfpVfGBGRkrCapWRtEcC0adNi+vTpVdfr7e1loGXN4hjKFUcZYjAzjzo0a5iI2Jz+bgOuA44AtlaaBNPfbWn1zcCk3NMPSmVmZtZBnGiZNYCksZL2rdwHPkx2IfIVwJy02hxgebq/AjhVmaOA7bkmRjMz6xClbzpct3k7c+ffMOznbVxwQgHRmA2oC7gum7WBPYDvR8SPJd0JLJN0OvAIMCutfyPZyMMNZNM7nDaSjbuemFl3Hf8DwP8Hilb6RMusHUTEQ8A7q5Q/ARxbpTyAM5oQmpmZtZCbDs3MzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMrHCSJkm6RdJ9ktZL+kIqP0/SZklr021G7jnnSNog6QFJH2ld9Gb186hDMzNrhj6gJyLuTnPOrZG0Mi27KCK+nl9Z0qHAbOAw4ADgZklviYhdTY3abIR8RsvMzAoXEVsi4u50fwdwP9n1PQcyE1gaEc9HxMNkc84dUXykZo3lM1pmZtZUkrqBdwG3A0cDZ0o6FbiL7KzXU2RJ2Orc0yoXXu//Wm1z4fVajCTOnil9dT2vnu2Nhv3ZKE60zMysaSTtA/wQOCsinpF0GXA+EOnvQuDTtb5eO114vRYjibOeq0MAbDxl+NsbDfuzUdx0aGZmTSFpT7Ik6+qI+BFARGyNiF0R8QJwOS81D/rC69YRnGiZmVnhlF0I9Arg/oi4MFc+Mbfax8kuxg7ZhddnS9pL0sHAZOCOZsVr1ihuOjQzs2Y4GvgUsE7S2lR2LnCypKlkTYcbgc8ARMR6ScuA+8hGLJ7hEYfWjpxomZlZ4SLiNkBVFt04yHMuAC4oLCizJnDToZmZmVlBhky0BpnNd7yklZIeTH/3T+WSdEmazfceSYcX/SbMzMzMyqiWM1qV2XwPBY4Czkgz9s4HVkXEZGBVegxwPFmnxclkc5tc1vCozczMzNrAkInWILP5zgSWpNWWACel+zOBqyKzGhjXb1SJmZmZ2agwrM7w/Wbz7YqILWnRY0BXun8g8GjuaZXZfLfkymqezbdrTH2z3RY1E2wZZpmtKFMs4HjMzMz6qznRqjKb74vLIiIkxXA2XOtsvpdevZyF64Y/OLKemW5rUYZZZivKFAs4HjMzs/5qGnVYbTZfYGulSTD93ZbKPZuvmZmZGbWNOqw6my/ZrL1z0v05wPJc+alp9OFRwPZcE6NZx5K0u6RfSLo+PT5Y0u1pBO61kl6VyvdKjzek5d2tjNvMzIpTS5vcQLP5LgCWSTodeASYlZbdCMwANgDPAac1NGKz8voC2WCR16THXwUuioilkr4NnE42Cvd04KmIOETS7LTeJ1sRsJlZdx0Xo+6Z0sf0xofSkYZMtAaZzRfg2CrrB3DGCOMyayuSDgJOIJvF+ovpTPAHgL9MqywBziNLtGam+wA/AL4hSanumJlZB/EleMwa4x+BvwX2TY9fCzwdEZUhs5XRt5AbmRsRfZK2p/Uf7/+i7TQ6twyjPMsQQ1niKEMMZuZEy2zEJJ0IbIuINZKmN/K122l0bhlGeZYhhrLEUYYYzMyJllkjHA18TNIMYG+yPloXk03Wu0c6q5UffVsZmbtJ0h7AfsATzQ/bzMyK5otKm41QRJwTEQdFRDcwG/i3iDgFuAX4RFqt/8jcyojdT6T13T/LzKwDOdEyK87ZZB3jN5D1wboilV8BvDaVf5GXrhNqZmYdxk2HZg0UEb1Ab7r/EHBElXX+APznpgZmZmYt4TNaZmZmZgVxomVmZmZWECdaZmZWOEmTJN0i6T5J6yV9IZWPl7RS0oPp7/6pXJIuSZequkfS4a19B2b1caJlZmbN0Af0RMShwFHAGZIOJRsMsioiJgOreGlwyPHA5HSbR3ZVBbO2487wDVTP9aIANi44ocGRmJmVS0RsAbak+zsk3U92lYSZ8OJl85aQDSY5O5VflaY+WS1pnKSJ6XXM2oYTLTMzaypJ3cC7gNuBrlzy9BjQle6/eKmqpHIZq5clWrVepqpdLkk0kjjruQxXvbrGNPYSXkUpw+fuRMvMzJpG0j7AD4GzIuKZ7PrrmYgIScOavLfWy1S1yyWJRhLn3DpbVerRM6WPWR2+PxvFfbTMzKwpJO1JlmRdHRE/SsVbJU1MyycC21J55VJVFfnLWJm1DSdaZmZWOGWnrq4A7o+IC3OL8pek6n+pqlPT6MOjgO3un2XtyE2HZmbWDEcDnwLWSVqbys4FFgDLJJ0OPALMSstuBGYAG4DngNOaG65ZYzjR6meokYM9U/qa2g5uZtYJIuI2QAMsPrbK+gGcUWhQZk3gpkMzMzOzgjjRMjMzMyuIEy0zMzOzgjjRMjMzMyuIEy0zMzOzggyZaEm6UtI2Sffmys6TtFnS2nSbkVt2Trra+gOSPlJU4GZmZmZlV8sZrcXAcVXKL4qIqel2I0C6Evts4LD0nG9J2r1RwZqZmZm1kyETrYi4FXiyxtebCSyNiOcj4mGyieaOGEF8ZmZmZm1rJBOWninpVOAuoCciniK7svrq3DqVq62/Qq1XXO8aU98VyYu6+nm98Qym3ljLcFXyPMdjZmb2cvUmWpcB5wOR/i4EPj2cF6j1iuuXXr2cheuGH+bGU6q/3lCGmvW9Z0pfXfEMpt5Yy3BV8jzHY2Zm9nJ1jTqMiK0RsSsiXgAu56XmQV9t3UYlSXtLukPSLyWtl/TlVH6wpNvTAJFrJb0qle+VHm9Iy7tbGb+ZmRWjrkRL0sTcw48DlRGJK4DZ6UvkYGAycMfIQjRrC88DH4iIdwJTgeMkHQV8lWzgyCHAU8Dpaf3TgadS+UVpPTMz6zC1TO9wDfBz4K2SNqUrrH9N0jpJ9wDvB/4rQESsB5YB9wE/Bs6IiF2FRW9WEpHZmR7umW4BfAD4QSpfApyU7s9Mj0nLj5U00AV3zcysTQ3Z2SgiTq5SfMUg618AXDCSoMzaUZrKZA1wCPBN4DfA0xFRGT2RHxxyIPAoQET0SdoOvBZ4vN9rlnLQSDVlGHxQhhjKEkcZYjCzkY06NLOcdPZ2qqRxwHXA2xrwmqUcNFJNGQYflCGGssRRhhjMzJfgMWu4iHgauAV4DzBOUiUDyg8OeXHgSFq+H/BEk0M1M7OCOdEyawBJr0tnspA0BvgQcD9ZwvWJtNocYHm6vyI9Ji3/t4iI5kVsZmbN4KZDs8aYCCxJ/bR2A5ZFxPWS7gOWSvp74Be81L/xCuC7kjaQXXlhdiuCNjOzYjnRMmuAiLgHeFeV8oeochmqiPgD8J+bEJpZKUi6EjgR2BYRb09l5wF/DfwurXZu7tq555BNg7IL+HxE/KTpQbdI9xATZ1t7cdOhmZk1w2LguCrlF0XE1HSrJFmHkp3lPSw951vpbLFZ23GiZWZmhYuIW8mayWsxE1gaEc9HxMPABqqcGTZrB246NDOzVjpT0qnAXUBPRDxFNs/c6tw6+TnoXqbWuebaZV6xnTt30jOl/PN8d41p7Dx8RSnD5+5Ey8zMWuUy4HyyqyicDywEPj2cF6h1rrl2mVest7eXhbc92+owhtQzpY9ZbbI/W/25u+nQzMxaIiK2RsSuiHgBuJyXmgdfnGcuyc9BZ9ZWnGiZmVlLSJqYe/hx4N50fwUwW9Jekg4GJgN3NDs+s0Zw06GZmRVO0jXAdGCCpE3Al4DpkqaSNR1uBD4DEBHrJS0D7gP6gDPSJa7M2o4TLTMzK1xEnFyl+IoqZZX1LwAuKC4is+Zw06GZmZlZQZxomZmZmRXEiZaZmZlZQZxomZmZmRXEiZaZmZlZQZxomZmZmRXEiZaZmZlZQZxomZmZmRWkYycs7Z5/Q6tDMDMzs1FuyDNakq6UtE3Svbmy8ZJWSnow/d0/lUvSJZI2SLpH0uFFBm9mZmZWZrU0HS4GjutXNh9YFRGTgVXpMcDxZBf/nAzMAy5rTJhmZmZm7WfIRCsibgWe7Fc8E1iS7i8BTsqVXxWZ1cC4fldnNzMzMxs16u2j1RURW9L9x4CudP9A4NHceptS2Rb6kTSP7KwXXV1d9Pb2Vt/QGOiZ0ldnmI1XRDwDvfeh7Ny5s+7nFmE0xyNpEnAVWV0IYFFEXCxpPHAt0A1sBGZFxFOSBFwMzACeA+ZGxN1NCdbMzJpmxJ3hIyIkRR3PWwQsApg2bVpMnz696nqXXr2chevK02e/Z0pfw+PZeMr0up7X29vLQPutFUZ5PH1AT0TcLWlfYI2klcBcsmb2BZLmkzWzn83Lm9mPJGtmP7JZwZqZWXPUO73D1kqTYPq7LZVvBibl1jsolZl1tIjYUjkjFRE7gPvJzua6md3MbBSr99TMCmAOsCD9XZ4rP1PSUrJf59tzTYxmo4KkbuBdwO2MsJm96Cb2RjatlqHpuAwxlCWOMsRgZjUkWpKuAaYDEyRtAr5ElmAtk3Q68AgwK61+I1mfkw1k/U5OKyBms9KStA/wQ+CsiHgm64qVqaeZvegm9nqbraspQ9NxGWIoSxxliMHMaki0IuLkARYdW2XdAM4YaVBm7UjSnmRJ1tUR8aNUvFXSxIjY4mZ2M7PRx5fgMWuANIrwCuD+iLgwt6jSzA6vbGY/NU3yexRuZrcO58mvbbRyomXWGEcDnwI+IGltus0ga2b/kKQHgQ+mx5A1sz9E1sx+OfC5FsRs1kyL8eTXNgqVZ94EszYWEbcBGmCxm9lt1IuIW9NAkbyZZH2AIRuV20s2/cmLo3KB1ZLGVZrgmxOtWeM40TIzs1Zp2uTX7TIKc+fOnfRM2dXqMIbUNaaxo5aLUobP3YmWmZm1XNGTX7fLKMze3l4W3vZsq8MYUs+UPma1yf5s9efuPlpmZtYqnvzaOp4TLTMzaxWPyrWO56ZDMzMrnCe/ttHKiVYJdM+/oa7nLT5ubIMjMTMrhie/ttHKTYdmZmZmBXGiZWZmZlYQNx2ajWL1NltvXHBCgyMxM+tMPqNlZmZmVhAnWmZmZmYFcaJlZmZmVhD30TIzM7Nhcx/P2viMlpmZmVlBnGiZmZmZFcSJlpmZmVlBnGiZmZmZFcSJlpmZmVlBnGiZmZmZFWRE0ztI2gjsAHYBfRExTdJ44FqgG9gIzIqIp0YWppmZmVn7acQZrfdHxNSImJYezwdWRcRkYFV6bGZmZjbqFNF0OBNYku4vAU4qYBtmpSLpSknbJN2bKxsvaaWkB9Pf/VO5JF0iaYOkeyQd3rrIzcysSCOdGT6AmyQF8J2IWAR0RcSWtPwxoKvaEyXNA+YBdHV10dvbW3UDXWOgZ0rfCMNsnDLFs3PnzgH3WyuM8ngWA98ArsqVVc7uLpA0Pz0+GzgemJxuRwKXpb9mZtZhRppoHRMRmyW9Hlgp6Vf5hRERKQl7hZSULQKYNm1aTJ8+veoGLr16OQvXledKQT1T+koTz+LjxjLQfmuF3t7eURtPRNwqqbtf8UygEsASoJcs0ZoJXBURAayWNE7SxNwPFDMz6xAjyhgiYnP6u03SdcARwNbKl4akicC2BsRp1o4GOrt7IPBobr1NqewViVZZz/xWi6MMZzTLEENZ4ihDDLXywCrrZHUnWpLGArtFxI50/8PAV4AVwBxgQfq7vBGBmrWzwc7uDvG8Up753XjKK+MowxnNMsRQljjKEMMwvT8iHs89Hqjp3aytjOQ/cxdwnaTK63w/In4s6U5gmaTTgUeAWSMP06wtDXR2dzMwKbfeQanMzF4yUNO7WVupO9GKiIeAd1YpfwI4diRBmXWIgc7urgDOlLSUrBP8dvfPslGu8IFV7dKUunPnTnqm7Gp1GEMaSXeFZn4OZfjcy9Gr26zNSbqG7Nf3BEmbgC+RJVjVzu7eCMwANgDPAac1PWCzcil8YFW7NKX29vay8LZnWx3GkEYyMKxa14OilOFzd6Jl1gARcfIAi15xdjeNNjyj2IjM2ocHVlkn87UOzcysZSSNlbRv5T7ZwKp7eanpHTywytqYz2iZmVkreWCVdTQnWmZm1jIeWGWdzomWmQ1b9/wbXlHWM6WPuVXK8zYuOKGokMzMSsl9tMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4kTLzMzMrCBOtMzMzMwK4msdmlnTVLtGYi18jURrN/Ue6z1T+vBXc2fxGS0zMzOzgjhtNjMzs6YZbWe2nWi1sXWbtzO3jgO2XQ9WM7N6+f+ltYqbDs3MzMwKUliiJek4SQ9I2iBpflHbMWtXriNmQ3M9sXZXSNOhpN2BbwIfAjYBd0paERH3FbE9s3bjOjI8tfbp6JnSV1fzUH9uLioH1xPrBEX10ToC2BARDwFIWgrMBFw5SmC0dUQsKdeREnMdKQ3XE3tRPfWyZ0of0xsfyrAUlWgdCDyae7wJOLKgbVmH6vAvO9eRDlQ5Zht1Zm0khorB9cRGi1Z/l7Rs1KGkecC89HCnpAcGWHUC8Hhzohra50sUT7Nj0VeHXKUU+yYXZ7V43tjUYEaonepJGepGGWIoSxxDxTBEfW6belJ0Hanh/15DleHYqcVoiLNRdaSoRGszMCn3+KBU9qKIWAQsGuqFJN0VEdMaG179yhRPmWIBxzNMQ9YRaK964hjKFUcZYmiAjv0uGYjjbKwyxFnUqMM7gcmSDpb0KmA2sKKgbZm1I9cRs6G5nljbK+SMVkT0SToT+AmwO3BlRKwvYltm7ch1xGxorifWCQrroxURNwI3NuClhjwl3GRliqdMsYDjGZYG1hEox3t1DC8pQxxliGHEOvi7ZCCOs7FaHqciotUxmJmZmXUkX4LHzMzMrCClTrRaeekFSZMk3SLpPknrJX0hlZ8nabOktek2o4kxbZS0Lm33rlQ2XtJKSQ+mv/s3IY635t7/WknPSDqrmftG0pWStkm6N1dWdV8oc0k6ju6RdHhRcTVbs+rIIPWh6ftc0u6SfiHp+vT4YEm3p21dmzpNI2mv9HhDWt7dwBjGSfqBpF9Jul/Se5q9LyT91/RZ3CvpGkl7t2JftINWfpcMZrj1qsWx1lTvWm04dbNpIqKUN7KOj78B3gS8CvglcGgTtz8RODzd3xf4NXAocB7w31q0TzYCE/qVfQ2Yn+7PB77ags/pMbI5RZq2b4D3AYcD9w61L4AZwL8CAo4Cbm/F51fQvm9KHRmkPjR9nwNfBL4PXJ8eLwNmp/vfBv4m3f8c8O10fzZwbQNjWAL8Vbr/KmBcM/cF2USeDwNjcvtgbiv2Rdlvrf4uGSK2YdWrFsdaU71r9W04dbNpMbV6pwyys94D/CT3+BzgnBbGs5zselvnUa5E6wFgYro/EXigyTF9GPj3dL+p+wbo5uWJVtV9AXwHOLnaeu18a2UdydWHpu5zsnmUVgEfAK4nS14eB/bov0/IRqq9J93fI62nBsSwH1mSo37lTdsXvDRj+vj03q4HPtLsfdEOt7J9lwwR66D1qoVx1VzvWhznsOpms25lbjqsdumFA1sRSDrN/i7g9lR0ZmoCuLLJpyADuEnSGmWzIQN0RcSWdP8xoKuJ8UD26/ia3ONW7RsYeF+U5lhqsJa8r371odn7/B+BvwVeSI9fCzwdEX1VtvNiDGn59rT+SB0M/A7459SU8k+SxtLEfRERm4GvA/8BbCF7b2to/r5oB21R/2usV60ynHrXSsOtm01R5kSrFCTtA/wQOCsingEuA94MTCX7B7ewieEcExGHA8cDZ0h6X35hZOl604aRpjb5jwH/KxW1ct+8TLP3xWhRpT68qOh9LulEYFtErClqGzXag6zZ+rKIeBfwLFlzxIuasC/2J7u48sHAAcBY4LiitmfFamW9GkqJ6l0tWl43qylzolXTJUqKJGlPsoP/6oj4EUBEbI2IXRHxAnA52dXlmyL9iiUitgHXpW1vlTQxxTsR2NaseMgSvrsjYmuKq2X7JhloX7T8WCpIU99XtfpAc/f50cDHJG0ElpI1Y1wMjJNUmRMwv50XY0jL9wOeGGEMkP163xQRlTPcPyD7597MffFB4OGI+F1E/An4Edn+afa+aAelrv/DrFetMNx610rDrZtNUeZEq6WXXpAk4Arg/oi4MFc+Mbfax4F7+z+3oHjGStq3cp+sb9S9ZPtkTlptDlkbf7OcTK7ZsFX7JmegfbECODWN/joK2J47jdzOmlZHBqoPNHGfR8Q5EXFQRHSTvdd/i4hTgFuATwwQQyW2T6T1R/xLNiIeAx6V9NZUdCxwH809/v4DOErSq9NnU4mhqfuiTZT2Mj511Kumq6PetUwddbNpgZX2RjZa59dkI0b+rsnbPobs9OI9wNp0mwF8F1iXylfQpE7VZCNmfplu6yv7g6ytfBXwIHAz8P+3d+/xcpX1vcc/X24hXEy46DaGSEDSWpQaMBW8nHO2oIiAhrZIUYQAsdQWLNZ4NEA9YJU2eAQUpFgUJGC4NYAgUEtE9qFYw9VIIIhECCZxQyQkgYCigd/543kmrAz7NrNnzWXv7/v1mtfMetaamd9aM8+s36znedbasUnxbEv6RzyuUNa0bUNK8HqBP5D+xczsb1uQOm5ekL9Hi4Fpzfwulfw5NKWODFAfWrLNgW5eGf20O3A3sJTUjD0ml2+dp5fm+bs38P2nAvfm7fE9YIdmbwvgi8DPSX9oLgfGtGJbavlQegAAIABJREFUdMKtWfWkjrhqqletvg2l3rX6VkvdbNbNZ4Y3MzMzK0k7Nx2amZmZdTQnWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYl6YhES9I3JX1hiMv2SPpE2TE1i6Rlkt6XH58q6dutjqkVJB0l6dZWx2FmZlaLtki0cjLxW0nPSVor6b8lfVLSZgAR8cmI+FIT4mhIkiapW9LLktbndXpE0nHDfd2I+OeIaEkSKSkkPZ/Xab2ktSW+1+T8fltUyiJiXkQcWNZ7WmfKdXaNpDGtjsWsDJKOlbRY0guSnpR0oaTxQ3zuxj/q1jptkWhlH4qI7YFdgTnA54GLWxvSsPw6IrYDXkNal29J2rNVwRSTlmF4W0Rsl29DquhmZZE0GfgfQAAfbmkwZiWQNAs4C/jfwDhgP9I+coGkrVoZmw1dOyVaAETEuoi4EfgrYIakt0q6VNKXASTtIOkmSb/J/2RvkrRL1cu8SdLdkp6VdIOkHSszJO2Xj5itlfQzSd25/EzSj/Y38hGbb+TyN0taIOmZfGTqiMJrHSxpST5qtVLSZ/tYn4iI7wFrgD0lbSZptqRfSlot6Zqq+I6W9ESed1rxtSSdIem7heljCst+oaqZ8QxJ8yV9V9KzwLGSxkm6WFJvjvfLkjYvvN7xkh7O2/U/Je062OeVjzztUZguflbdklZImiVpVX7f4wrLjpV0dl6HdZLulDQWuCMvsjZ/Fu/M/+ruLDz3XZLuyc+7R9K7CvN6JH1J0o/zZ3OrpJ0HWxfrOMcAC4FLgRmVQkk7Sfp+rv/35O958bvTb502axeSXgN8EfhURPwgIv4QEcuAI4DJwMeLv7f5Od2SVuTHlwNvBL6ff0c/l8vfU9gHLpd0bC4fJ+myvG99QtI/Krcq5d/fH0s6Nz/vsfwbfGx+jVWSinVwjKSvSvqVpKeUuv+MbcZ2a0dtl2hVRMTdwApS8lO0GfAdUlb/RuC3wDeqljkGOB6YAGwAzgOQNBG4GfgysCPwWeBaSa+NiNOA/wJOykdsTpK0LbAAuAJ4HXAk8K965cjUxcDf5CNxbwV+VL0eObH6c2A8sBj4FHAY8L+AN5ASsAvysnsCFwJH53k7AdVJJIVl/xU4Kq/nOGBi1WLTgfn5veeRdkgbgD2AvYEDgU/k15sOnAr8BfDavC2u7Ou9a/T6QmwzgQsk7ZDnfRV4O/Au0ufxOeBl4H/m+ePzZ/GT4gvmxPRm0ue6E3AOcLOknQqLfQw4jvS5bUX6rG1kOYb0vZ4HfEBSVy6/AHie9N2bwaZJ2GB12qxdvAvYGriuWBgR64FbgPcP9OSIOBr4Fam1aLuI+Er+8/wfwPmk3/mpwKL8lPNJv9W7k/ZPx5B+Qyv2BR4g/eZeAVwF/Blpf/Jx0kGK7fKyc4A/yq+/B+n3///UtvojR9smWtmvSTvgjSJidURcGxEvRMRzwJmkL0XR5RHxYEQ8D3wBOCIfufk4cEtE3BIRL0fEAuBe4OB+3v9QYFlEfCciNkTET4FrgY/k+X8gHaV6TUSsiYj7C899g1I/pqeB04GjI+IR4JPAaRGxIiJeBM4ADldq2jscuCki7sjzvkBKPPpyOPD9iLgzIn5P+hJH1TI/iYjvRcTLpCbMg4FPR8TzEbEKOJe0oyHH9S8R8XBEbAD+GZhadVTr/vxvZq2k8/qJq9ofgH/K/8ZuAdYDf5z/KR0PnBwRKyPipYj477zegzkEeDQiLs+fy5XAz4EPFZb5TkT8IiJ+C1xDqvA2Qkh6D+nP1jURcR/wS+BjuZ7/JXB6/o1YAswtPHWwOm3WLnYGns6/x9V68/xafQz4YURcmX+TV0fEolxvjgROiYjn8pGzs0l/+isez/XmJeBqYBLpt/3FiLgV+D2whyQBJwD/EBHP5P30P/PKvmbUaUS/nTJNBJ4pFkjahpQgHARUjoxsL2nz/AUAWF54yhPAlqQv5a7ARyQVd8hbArf38/67Avtq047fWwCX58d/CfwjMEfSA8DswtGXX0dEX0ejdgWul1RMoF4CukhHsTbGHhHPS1rdT2zVy77Qx7LF7bAraV17Uz0AUqK9vDD/65LOLjxHpM/giTy9T0Qs7See/qyu+qF4AdiO9HlsTdpB1uoNhZgqnmDTI3pP9vGeNnLMAG6NiKfz9BW57EpSHS1+96vrwUB12qxdPA3sLGmLPpKtCXl+rSbR92/uzqT9Q/F3tfo39anC498CRER12XakI2XbAPcV9jUCNmeUattES9KfkT7kO0mHLCtmAX8M7BsRT0qaCvyU9EFWTCo8fiPpqMrTpB/cyyPir/t52+ojQsuB/xcRfR6ijYh7gOmStgROIh05mdTXslWveXxE/Lh6hqRe4E8K09uQDtP2pZe0HSrLju1j2eL6LAdeBHbu5x/ScuDMiJg3SPzVXiBVqorXk5p8B/M08DvgTcDPquZVfw7Vfk3aYRa9EfjBEN7XOlz+rh8BbC6pklCPITWRd5Gax3cBfpHnFevkgHXarI38hPSb/RekfQsAuXnug6SuHnvz6t/for72ae/o472eJu0ndwWW5LI3AivriPtpUtL1loio5/kjTts1HUp6jaRDSe2/342IxVWLbE/6ENfmvjqn9/EyH5e0Z05U/gmYn492fRf4kKQPSNpc0ta582DlyNNTpPbpipuAP1LqoL5lvv2ZpD+RtJXSuZ3GRcQfgGfpv5mv6JvAmZUmOUmvzf2jIPWnOjR3Vtwqx97fZzQ/r8u78rJnsGmyuYmI6AVuBc7O23gzSW+SVGl2/SZwiqS35LjGSRpKc8oicpONpIN4dTNuf/G8DFwCnCPpDfn571Qapv8b0rbcvZ+n30L6XD4maQtJfwXsSfq8bOQ7jHQUeE9Sk/BU0h+U/yL1K7kOOEPSNpLenMsq+q3TzV0Fs4FFxDpSZ/jzJR2Uv6uTSUnXCtJR2EXAwZJ2lPR64NNVL1O9T5sHvE/SEfm3cydJU/P+8RrSvmn7vH/6DGmfWWvcLwPfAs6V9DpI/aMlfaDW1xop2inR+r6k50gZ92mkDs59nXvqa8BYUta8kL6PYlxO6vj9JKl56u8BImI5qYP4qaSd+XLSsNnKdvg6qb/UGknn5bblA0lty7/Or3cW6d8zpPbrZUqj+j5J6pg+mK8DNwK35vVdSD5iFxEPASeSmkF6SR3l+zw6lJf9FCkh7SX1fVpF+gfUn2NIHcOX5NeeTzoETURcn9ftqrw+D5L+NQ3mZFLfqLWk9f/eEJ5T8VnSAIF7SE3EZwGbRcQLpL53P879wfYrPikiVpP62swCVpM60R9aaEaykW0GqQ/eryLiycqNNCjmKNLR5XGk+no5qTnxRYAh1GmzthERXyHtr75K+jN/F2m/dUDuz3o5qUVgGemP9NVVL/EvwD/m39HPRsSvSH11Z5F+cxcBb8vLfoo0iOQxUkvSFaQ/w/X4PLAUWJj3Jz+k0AIz2ihisFYa6wT5cPJaYEpEPN7qeMzahaSzgNdHxIxBFzYza7B2OqJlNZL0odw8si3pH89i0j8bs1FL6TxZf6rkHaTTilzf6rjMbHRyotXZppOaP34NTAGODB+iNNue1E/reVJTytnADS2NyMxGLTcdmpmZmZXER7TMzMzMStIW59HaeeedY/LkyQA8//zzbLvttq0NqIm8vs113333PR0Rr21ZAMNQrCfQ+m05HI69NYYae6fWk+o6UtROn1s7xQLtFU+nxFJTHYmIlt/e/va3R8Xtt98eo4nXt7mAe6MNvvP13Ir1JKL123I4HHtrDDX2Tq0n1XWknnVvhnaKJaK94umUWGqpI246NDMzMyuJEy0zMzOzkjjRMmuAfDmnuyX9TNJDkr6Yy3eTdJekpZKuzpdLQtKYPL00z5/cyvjNmkHSMkmLJS2SdG8u21HSAkmP5vsdcrkknZfryAOS9mlt9Gb1caJl1hgvAvtHxNtI1947KF866Czg3IjYg3TZo5l5+ZnAmlx+bl7ObDR4b0RMjYhpeXo2cFtETAFuy9OQLgE2Jd9OAC5seqRmDeBEy6wBcv/I9Xlyy3wLYH/SNSUB5pIuiAzpZLNz8+P5wAGS+r0ouNkIVqwL1XXksly3FgLjJU1oRYBmw9EWp3cYyOTZN9f1vGVzDmlwJGYDk7Q5cB+wB3AB8EtgbURsyIusACbmxxNJF4clIjZIWgfsRLpYevE1TyD9m6erq4uenp6N89avX79xevHKdXXFvNfEcXU9b7iKsXcaxz4sAdwqKYB/i4iLgK6I6M3znwS68uONdSSr1J/eQtmAdaRo1TPrOH9e7RcIKKOOtMHnsIl2imckxtL2iZZZp4iIl4CpksaTrq335ga85kXARQDTpk2L7u7ujfN6enqoTB9b7x+So7oHXaYMxdg7jWMflvdExEpJrwMWSPp5cWZERE7ChmygOlJ0/rwbOHtx7bu8MupIG3wOm2ineEZiLG46NGuwiFgL3A68k9TcUfl13wVYmR+vBCYB5PnjgNVNDtWsqSJiZb5fRfoz8g7gqUqTYL5flRffWEeyYv0x6xhOtMwaQNJr85EsJI0F3g88TEq4Ds+LzeCVixvfmKfJ83+UT4JnNiJJ2lbS9pXHwIHAg2xaF6rryDF59OF+wLpCE6NZx3DToVljTADm5n5amwHXRMRNkpYAV0n6MvBT4OK8/MXA5ZKWAs8AR7YiaLMm6gKuz2M+tgCuiIgfSLoHuEbSTOAJ4Ii8/C3AwcBS4AXguOaHbDZ8gyZakrYG7gDG5OXnR8TpknYDriJ14L0PODoifi9pDHAZ8HZSU8hfRcSykuI3awsR8QCwdx/lj5GaR6rLfwd8pAmhmbWFXBfe1kf5auCAPsoDOLEJoZmVaihNhz4/kJmZmVkdBk20fH4gMzMzs/oMqY9WM88PVH3eill7baAe7XIejsG00zlDmmG0ra+ZmY1uQ0q0mnl+oOrzVnTa+YFq1U7nDGmG0ba+ZmY2utV0egefH8jMzMxs6AZNtHx+IDMzM7P6DKXp0OcHMjMzM6vDoImWzw9kZmZmVh9fgsfMzMysJE60zMzMzEriRMvMzMysJE60zMzMzEriRMvMzMysJE60zMzMzEriRMvMzMysJE60zIZJ0iRJt0taIukhSSfn8jMkrZS0KN8OLjznFElLJT0i6QOti97MzMo0pItKm9mANgCzIuJ+SdsD90lakOedGxFfLS4saU/SFRPeArwB+KGkP8oXbzczsxHER7TMhikieiPi/vz4OdK1QCcO8JTpwFUR8WJEPA4spY+rLJiZWefzES2zBpI0mXTJqruAdwMnSToGuJd01GsNKQlbWHjaCvpJzCSdAJwA0NXVRU9Pz8Z569ev3zg9a68NdcVbfL1mKsbeaRy7mdXCiZZZg0jaDrgW+HREPCvpQuBLQOT7s4Hja3nNiLgIuAhg2rRp0d3dvXFeT08PleljZ99cV8zLjuoedJkyFGPvNI7dzGrhpkOzBpC0JSnJmhcR1wFExFMR8VJEvAx8i1eaB1cCkwpP3yWXmY14kjaX9FNJN+Xp3STdlQeHXC1pq1w+Jk8vzfMntzJus3o50TIbJkkCLgYejohzCuUTCov9OfBgfnwjcGTekewGTAHubla8Zi12MqkfY8VZpEEjewBrgJm5fCawJpefm5cz6ziDJloeum42qHcDRwP7V9WHr0haLOkB4L3APwBExEPANcAS4AfAiR5xaKOBpF2AQ4Bv52kB+wPz8yJzgcPy4+l5mjz/gLy8WUcZSh8tD103G0BE3An0tQO4ZYDnnAmcWVpQZu3pa8DngO3z9E7A2oiojOYoDgyZCCwHiIgNktbl5Z8uvuBAA0aKusbWN2ikjMED7TYooZ3iGYmxDJpoRUQv0JsfPydpyEPXgcclVYau/2TY0ZqZWUeSdCiwKiLuk9TdqNcdaMBI0fnzbuDsxbWP/ypjwEi7DUpop3hGYiw1fesaOXS9v38h1Rlkpw1br1U7Ze/NMNrW18w2ejfw4dysvjXwGuDrwHhJW+SjWsWBIZVBIyskbQGMA1Y3P2yz4RlyotXooev9/QupziA7bdh6rdope2+G0ba+ZpZExCnAKQD5iNZnI+IoSf8OHA5cBcwAbshPuTFP/yTP/1FERLPjNhuuIY069NB1MzMryeeBz+RuJjuRRvCS73fK5Z8BZrcoPrNhGfSI1kBD13P/LXj10PUrJJ1D6gzvoetmZrZRRPQAPfnxY/RxCaqI+B3wkaYGZlaCoTQdVoauL5a0KJedCnxU0lRS0+Ey4G8gDV2XVBm6vgEPXTczM7NRaiijDj103czMzKwOPjO8mZmZWUmcaJmZmZmVxImWmZmZWUmcaJmZmZmVxImWmZmZWUmcaJmZmZmVxImWmZmZWUmcaJmZmZmVxImWWQNImiTpdklLJD0k6eRcvqOkBZIezfc75HJJOk/SUkkPSNqntWtgZmZlcKJl1hgbgFkRsSewH3CipD1JF8K9LSKmALfxyoVxP0i6DugU4ATgwuaHbGZmZXOiZdYAEdEbEffnx88BDwMTgenA3LzYXOCw/Hg6cFkkC4HxkiY0OWwzMyvZUC4qbWY1kDQZ2Bu4C+iKiN4860mgKz+eCCwvPG1FLustlCHpBNIRL7q6uujp6dk4b/369RunZ+21oa5Yi6/XTMXYO41jN7NaONEyayBJ2wHXAp+OiGelV67HHhEhKWp5vYi4CLgIYNq0adHd3b1xXk9PD5XpY2ffXFe8y47qHnSZMhRj7zSO3cxqMWjToTv5mg2NpC1JSda8iLguFz9VaRLM96ty+UpgUuHpu+QyMzMbQYZyRKvSyfd+SdsD90laABxL6uQ7R9JsUiffz7NpJ999SZ189y0j+IFMrvcf/pxDGhyJjQZKh64uBh6OiHMKs24EZgBz8v0NhfKTJF1Fqh/rCk2MZmY2QgyaaOUf/978+DlJxU6+3XmxuUAPKdHa2MkXWChpvKQJ3onYCPdu4GhgsaRFuexUUoJ1jaSZwBPAEXneLcDBwFLgBeC45oZrZmbNUFMfrWZ08q3urFlvJ996Nbuj6GjrnDpS1zci7gTUz+wD+lg+gBNLDcrMzFpuyIlWszr5VnfWrLeTb72a3Tl4tHVOHW3ra2Zmo9uQzqPlTr5mZjYckraWdLekn+WBVV/M5btJuisPoLpa0la5fEyeXprnT25l/Gb1Gsqow8E6+cKrO/kek0cf7oc7+ZqZGbwI7B8RbwOmAgflfcRZwLkRsQewBpiZl58JrMnl5+blzDrOUI5oVTr57i9pUb4dTOrk+35JjwLvy9OQOvk+Rurk+y3g7xoftpmZdZJ8FYT1eXLLfAtgf2B+Lq++ekLlqgrzgQNU7LNi1iGGMurQnXzNzGzYJG0O3AfsAVwA/BJYGxGVUU+VwVNQGFgVERskrQN2Ap6ues1+r55Q1DW2vsFVZQzeabdBQe0Uz0iMxWeGNzOzpoiIl4CpksYD1wNvbsBr9nv1hKLz593A2Ytr3+WVMUCq3QYFtVM8IzEWX1TazMyaKiLWArcD7yRdUL2SARUHT20cWJXnjwNWNzlUs2FzomVmZqWT9Np8JAtJY4H3Aw+TEq7D82LVA6sqA64OB36Uu6aYdRQ3HZqZWTNMAObmflqbAddExE2SlgBXSfoy8FPSKHfy/eWSlgLPAEe2Imiz4XKiZWZmpYuIB0hXFqkufwx4Rx/lvwM+0oTQzErlpkMzMzOzkjjRMjMzMyuJEy0zMzOzkriPlpmZmY1Yk2ffXNfzLj1o24a8v49omZmZmZXER7TMGkDSJcChwKqIeGsuOwP4a+A3ebFTI+KWPO8U0kVzXwL+PiL+s+lBU/8/vWVzDmlwJGZmI5OPaJk1xqXAQX2UnxsRU/OtkmTtSTon0Fvyc/41n1vIzMxGGCdaZg0QEXeQTqo4FNOBqyLixYh4HFhKH+cRMjOzzuemQ7NynSTpGOBeYFZErAEmAgsLy6zIZa8i6QTgBICurq5NriRfvLL8rL02lBB6/4Z7Rfti7J3GsZtZLQZNtDq174lZG7gQ+BIQ+f5s4PhaXiAiLgIuApg2bVoUryRfvLL8sXX2tarXsqO6B11mIMXYO41jN7NaDKXp8FLc98SsZhHxVES8FBEvA9/ilebBlcCkwqK75DIzMxthBk203PfErD6SJhQm/xx4MD++EThS0hhJuwFTgLubHZ+ZmZVvOH20Sul7Ut2HoNP6ntRqtPWZGKnrK+lKoBvYWdIK4HSgW9JUUtPhMuBvACLiIUnXAEuADcCJEfFSK+I2M7Ny1Ztoldb3pLoPQaf1PanVaOszMVLXNyI+2kfxxQMsfyZwZnkRmZlZO6jr9A7ue2JmZmY2uLoSLfc9MTMzMxvcUE7v4L4nZmZmZnUYNNFy3xMzMzOz+vjM8FXqvcgu+EK7ZmZmtilf69DMzEonaZKk2yUtkfSQpJNz+Y6SFkh6NN/vkMsl6TxJSyU9IGmf1q6BWX2caJmZWTNsIJ1zcU9gP+DEfDWR2cBtETEFuC1PA3yQNKBqCumcixc2P2Sz4XOiZWZmpYuI3oi4Pz9+DniYdELr6cDcvNhc4LD8eDpwWSQLgfFVI97NOoL7aJmZWVNJmgzsDdwFdEVEb571JNCVH08ElheeVrnSSG+hrN+rjFTrGlvflUbKuJJFu10ho53iKSOWeq8w06hYnGiZmVnTSNoOuBb4dEQ8K2njvIgISVHL6/V3lZFq58+7gbMX177LK+NqIe12hYx2iqeMWOq9wsylB23bkFjcdGhmZk0haUtSkjUvIq7LxU9VmgTz/apc7iuN2IjgRMvMzEqndOjqYuDhiDinMOtGYEZ+PAO4oVB+TB59uB+wrtDEaNYx3HRoZmbN8G7gaGCxpEW57FRgDnCNpJnAE8ARed4twMHAUuAF4LjmhmvWGE60zMysdBFxJ6B+Zh/Qx/IBnFhqUGZN4KZDMzMzs5I40TJrAEmXSFol6cFCmc94bWY2yjnRMmuMS4GDqsp8xmszs1HOiZZZA0TEHcAzVcU+47WZ2Sg3aGd4SZcAhwKrIuKtuWxH4GpgMrAMOCIi1uThu18njRR5ATi2cskFs1FoWGe8hoHPel08a3G9Zz6u13DPltxOZ6KulWM3s1oMZdThpcA3gMsKZZUmkTmSZufpz7Npk8i+pCaRfRsZsFknqueM1/l5/Z71ungG5XrPfFyv4Z4tu53ORF0rx25mtRi06dBNImZ18xmvzcxGuXrPo1Vak0j1oe1mN4kMRz2H5EfbofxRtr6VM17P4dVnvD5J0lWkI74+47WZ2Qg17BOWNrpJpPrQdrObRIajnuaU0XYof6Sur6QrgW5gZ0krgNMZwWe8nlxnvVw255AGR2Jm1t7qTbSekjQhInrdJGIGEfHRfmb5jNdmZqNYvad38EVAzczMzAYxlNM7jKomETMrT6XJcdZeG2rqFuAmRzPrVIMmWm4SMTMzM6uPzwxvZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmZmYlcaJlZmZmVhInWmZmVjpJl0haJenBQtmOkhZIejTf75DLJek8SUslPSBpn9ZFbjY8TrTMzKwZLgUOqiqbDdwWEVOA2/I0wAeBKfl2AnBhk2I0azgnWmZmVrqIuAN4pqp4OjA3P54LHFYovyyShcB4SROaE6lZYw16CR4zM7OSdEVEb378JNCVH08ElheWW5HLeqki6QTSUS+6urro6enp+43Gpmts1qq/1xuO9evXl/K69WqneMqIpZ7PvZGxONEyM7OWi4iQFHU87yLgIoBp06ZFd3d3n8udP+8Gzl5c+y5v2VF9v95w9PT00F+crdBO8ZQRSy0XsC+69KBtGxKLmw7NSiZpmaTFkhZJujeX9dkJ2GyUearSJJjvV+XylcCkwnK75DKzjjOsI1qSlgHPAS8BGyJimqQdgauBycAy4IiIWDO8MDvD5Dqy5ll7baC78aFY+3lvRDxdmK50Ap4jaXae/nxrQjNrmRuBGcCcfH9DofwkSVcB+wLrCk2MZh2lEU2H3oGY1W46bMyx5wI9uJ70q54/MQDL5hzS4EisXpKuJH3nd5a0AjidlGBdI2km8ARwRF78FuBgYCnwAnBc0wM2a5Ay+mh5B2K2qQBuzf1P/i33KemvE/AmBuroW+yoWW9nz1apt2NyrUZDR+ZatDL2iPhoP7MO6GPZAE4sNyKz5hhuotXwHUj1D0Gn7UBq1TW2nJ1Bu+rkndQwvCciVkp6HbBA0s+LMwfqBDxQR99ip9F6O3u2yqy9NtTVMblWo6Ejcy06OXazTjXcX7qG70Cqfwg6bQdSq1l7beCIUfTDNxp/6CNiZb5fJel64B3kTsAR0VvVCdjMzEaQYY06LO5AgE12IPCqUSRmo46kbSVtX3kMHAg8yCudgGHTTsBmZjaC1J1oeQdiNiRdwJ2SfgbcDdwcET8gdQJ+v6RHgfflaTMzG2GG03TYBVwvqfI6V0TEDyTdQ9+jSMxGnYh4DHhbH+Wr6aMTsJmZjSx1J1regZiZmZkNzGeGNzMzMyuJr3VoZiOWT3RqZq3mI1pmZmZmJXGiZWZmZlYSNx2amVUZqMlx1l4b+j2RspsczayaE6024H4kZmZmI5ObDs3MzMxK4kTLzMzMrCROtMzMzMxK4j5aZmYN4v6WZlbNiVYH84+6mZlZe3PToZmZmVlJnGiZmZmZlcSJlpmZmVlJSku0JB0k6RFJSyXNLut9zDqV64jZ4FxPrNOV0hle0ubABcD7gRXAPZJujIglZbyf1abeTvT1qrfz/Uju7O86YkXDqZOd8H2vl+uJjQRljTp8B7A0Ih4DkHQVMB1w5RiFijuRga4TN8q4jlhD1JKkFetfhyRorifW8cpKtCZj4YkoAAAG2klEQVQCywvTK4B9iwtIOgE4IU+ul/RIfrwz8HRJcbWdv/f6NpzOGnD2rmW+dw0GrSMwYD2BDv7udPL3fqTEPlLqySB1pKiuz22Q7VSvdvsOtVM8bRPLe88aMJYh15GWnUcrIi4CLqoul3RvRExrQUgt4fW1gfRXT6Czt6Vjb41Ojr0/A9WRonZa93aKBdornpEYS1md4VcCkwrTu+QyM0tcR8wG53piHa+sROseYIqk3SRtBRwJ3FjSe5l1ItcRs8G5nljHK6XpMCI2SDoJ+E9gc+CSiHhoiE8f9BDwCOP1HYWGWUcqOnlbOvbW6KjYG1RPKtpp3dspFmiveEZcLIqIRryOmZmZmVXxmeHNzMzMSuJEy8zMzKwkbZNojbbLLEi6RNIqSQ+2OpaySZok6XZJSyQ9JOnkVsfUafrbhpJ2lLRA0qP5fodWx9ofSZtL+qmkm/L0bpLuynX+6tzZue1IGi9pvqSfS3pY0js7ZbtL+of8fXlQ0pWStu6U7V6LwfYfksbkdV2a131yYd4pufwRSR9oQiyfyfX4AUm3Sdq1MO8lSYvybdid/ocQy7GSflN4z08U5s3I3+9HJc1oQiznFuL4haS1hXmN3i4D7n+VnJdjfUDSPoV5tW+XiGj5jdTJ8ZfA7sBWwM+APVsdV8nr/D+BfYAHWx1LE9Z1ArBPfrw98IuR/vk2axsCXwFm5/LZwFmtjnWAdfgMcAVwU56+BjgyP/4m8LetjrGfuOcCn8iPtwLGd8J2J53s83FgbGF7H9sp272G9Rx0/wH8HfDN/PhI4Or8eM+8/Bhgt/w6m5ccy3uBbfLjv63EkqfXN3m7HAt8o4/n7gg8lu93yI93KDOWquU/RRr40PDtkl9vwP0vcDDwH4CA/YC7hrNd2uWI1sbLLETE74HKZRZGrIi4A3im1XE0Q0T0RsT9+fFzwMOknYAN0QDbcDopESDfH9aaCAcmaRfgEODbeVrA/sD8vEhbxi5pHOlH+WKAiPh9RKylQ7Y7aWT5WElbANsAvXTAdq/RUPYfxc9rPnBA/g5OB66KiBcj4nFgaX690mKJiNsj4oU8uZB0brAyDGe/+gFgQUQ8ExFrgAXAQU2M5aPAlcN4vwENYf87HbgskoXAeEkTqHO7tEui1ddlFrwjHoHyIfu9gbtaG0nnqtqGXRHRm2c9CXS1KKzBfA34HPBynt4JWBsRG/J0u9b53YDfAN/JzZ7flrQtHbDdI2Il8FXgV6QEax1wH52x3WsxlP3HxmXyuq8jfQcbve+p9fVmko6cVGwt6V5JCyUNNwEeaix/mZvH5kuqnBy2ZdslN6XuBvyoUNzI7TIU/cVb13Zpl0TLRgFJ2wHXAp+OiGdbHU8nGmgbRjq23Xbna5F0KLAqIu5rdSx12ILUxHBhROwNPE9qKtyojbf7DqR/5rsBbwC2ZXhHJayBJH0cmAb830LxrpEu+fIx4GuS3lRyGN8HJkfEn5KOzswdZPlmOBKYHxEvFcqavV0aql0SLV9mYYSTtCUpQZgXEde1Op5O1M82fCof0ibfr2pVfAN4N/BhSctITQb7A18nHY6vnDS5Xev8CmBFRFSOwM4nJV6dsN3fBzweEb+JiD8A15E+i07Y7rUYyv5j4zJ53ccBq4f43EbHgqT3AacBH46IFyvl+SgkEfEY0EM6cl1aLBGxuvD+3wbeXst6NDKWgiOpajZs8HYZiv7irWu7tEui5cssjGC5L8TFwMMRcU6r4+lEA2zDG4HKyJcZwA3Njm0wEXFKROwSEZNJdftHEXEUcDtweF6sXWN/Elgu6Y9z0QHAEjpgu5OaDPeTtE3+/lRib/vtXqOh7D+Kn9fhpO9g5PIj86jE3YApwN1lxiJpb+DfSEnWqkL5DpLG5Mc7k5LiJSXHMqEw+WFS309IZ+I/MMe0A3BgListlhzPm0mdzH9SKGv0dhmKG4Fj8ujD/YB1uatAfdulkT35hzkK4GDSSKpfAqe1Op4mrO+VpH4TfyD9a57Z6phKXNf3kJpWHgAW5dvBrY6rk279bUNSP5PbgEeBHwI7tjrWQdajm1dGHe5O2qktBf4dGNPq+PqJeSpwb9723yPtCDpiuwNfBH4OPAhcThpd1xHbvcb1fNX+A/gnUjIDsHVe16V53XcvPPe0/LxHgA82IZYfAk8V6vGNufxdwGLSiLzFjdgnDCGWfwEeyu95O/DmwnOPz9trKXBc2bHk6TOAOVXPK2O7vGr/C3wS+GSeL+CCHOtiYNpwtosvwWNmZmZWknZpOjQzMzMbcZxomZmZmZXEiZaZmZlZSZxomZmZmZXEiZaZmZlZSZxomZmZmZXEiZaZmZlZSf4/YPa5247crD0AAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"# Plotting certain values against outcome\n",
"sns.pairplot(dataset,x_vars=[\"Glucose\",\"BMI\",\"BloodPressure\"],y_vars=[\"Outcome\"])"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 215
},
"id": "hUjGCGrrsqcj",
"outputId": "0f878492-371c-487e-eb1d-d30654f1c037"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<seaborn.axisgrid.PairGrid at 0x7fcf51414550>"
]
},
"metadata": {},
"execution_count": 12
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 540x180 with 3 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAC0CAYAAAAjO94cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3df5xcdX3v8ddnfu/vJJvNDxJCAiQCG6Niqmi9FEEQvCFQf6BeLVq1Xq1WrrS20noTkkv1WitWW2qrrQpWRRQLCUWRX5beKpaAEBIwIQQICfmx+bU/Znd+f+8f58xkZndmdjaZ2Z2N7+fjMY/M+Z7vOedzzvmc735z5nxnzDmHiIiIyIkKTHUAIiIicnJQp0JERETqQp0KERERqQt1KkRERKQu1KkQERGRuph2nYpLL73UAXrp1cjXhCgn9ZqE14QoJ/Vq8KuiadepOHjw4FSHIFJCOSnNRjkpU2XadSpERESkOTWsU2Fm3zCzA2a2pcJ8M7OvmNkOM9tsZuc2KhYRERFpvFAD1/0t4O+AWyrMvwxY6r9eC3zV/3fCMpkcW/f2s7c/wfyuFnrndxIKTf+bMLmc4/lDcQ7Fk0SCAYZTWea0RxnJZNl9ZISe9ijhkJHOOgYSKdoiYfqH03S2hAia0TeUYm5nlGQmy2Aiw4zWCEeG08xsDRMJOtJZ41A8RU9HlGzWcWAoydyOKG3RIIOJLEdH0sxqDTOcyhAJBRlKZGiNBImEAwwl08RCQTpiYYZTWQ4MJulpjxANBdk3kKA9GiIWDpDNOQZGMsxoDRNPZYiGAoSDQY4Mp+hqCZNzjiPxNKd0xUjncvQNpmiPheiMhkhkssRTGVrDIeKpDB2xcCH+aAhyOWMomWUomaGnIwLkyLkAR0fSdMXC9I+k6G6P0h4N0D+S5VA8RVdLiHAwwOBIhtO621gyu41AwOp+7qZzTuZyjl2H4+wbSDCQyDCzJczRkTStkSChgBEIGEPJNN1tEZJp552jSIi+wSRzO6MA9A0lmdUaJZ5KM7s9SiqdY99Akp7OCLFQkBePjHDqzBYS6RxHRlLM8nNzVmuY1kiQXYdH6IiFaI8GSWUd/cNpulq9fEmkM7RGwvSPpOlqCTOQSNMZ83K/NRKkPRoins4wlMgyqy1MLgexSJB0JkcykyEUDNI3mGRWe4QZLSGW9nQSCBi7DsfZP5BkIOGtd05HlIUzWtl1ZJj9AwnmdsZY3D02X/LXabU64x3vE1m+VkdHEmzf5+3j3M4oy+a1MaMlVvftjGci+1tL3eI6p3RF2T+Y4uBQktnt0UKOZLJZoqEQORxzOqIcjacZSKaIhkIcGkrS3R7lyHCa7rYwkWCAXUdGmNMRxZHDCDCSytASCXFgIMkpM2KYwZHhFO3RMH2DSXo6ogQCOXK5APsHkszvihIOBrx2uuNYHNlclpZwiHTWkc5mCQWDhfMRCjgyOePIcIo5HVECGC8eHWFuR5SOliBDiRwDiRSdsQipTI65nTGCAe9aM4yhZIr2aPl5h+NJ5na2cPbcDnb3jzQ01xrWqXDOPWRmi6tUuQK4xXnfE/6wmc0ws/nOub0T2U4mk+OOJ/bwmTu2kEjniIUD3HDlcq58xYJp04iXk8s5frJ1H5//ydO8c+UivvLAM4X9u+aipdzyixeIhIw/vOBM/v5nOwp1ZrZGuPp1p/Hl+0vf55f9xIVLeeDX+7hq5Wms2bBlTJ2Vp3Vx1cpF3OSv87ObdpXdfms4yMbNe7hq5SLWbNhaNraP/M6ZrNt4bN51l55FMpvjxnu3l9T/8ZN7WfWKU8aUd7eFOTKc4Uv3bS+J//ubdvHHFy+jbyjFF+7ZVpi3fnUvt23axYVnzSuJd/0Vy7npwWd44dBISYxHhlPceNUrubR3Xl0vrOmck7mc4z92HOClo0n+4d938D9ecxqfuK/0vLRFgsztiPDrgSFu27SLt716Ees2PlY23z75pmXsPjzCZ3/860LZ2st7eWTnQX7r9Nkl+fGJC5fy2U27+MMLzuQnT+5l56H4mBz688vOYiSd47v/9QLvXLmI71fIz7ZIkK/++06ODKcKOfOxC84g66xkfWsv72XfQIJMFnYcGCqJ/VNvfhlzOqJ86oebC2Wj8yV/nV572+MV64x3vE9k+VodHUnw0y19rNmwpeh6Wc4ly3smtWMxkf2tpW5xndctmcWlL5/P2g1bx7QXHzn/TG5/bBdXvfpUdhyIc/uju3jbuYtYd9djY/LvI79zJt/75Qv0J9J87IIzvRz36+Zz/NZHxubd+tW93PSzHWXbmUK7dcnLGEkluP/pvVx09rFYT+tu4WMXnFm2LT0ynGL96l7ue3ovrzy1u2Sbo6+H4nnXXryMaDDA537y62PbeONS1ty5paG5NpUt3ALgxaLp3X7ZhGzd219ovAES6RyfuWMLW/f21yfKKfL8oTjX3vY4q1YsKCQKePv35fuf4a3nLmTVigWs3bC1pM5bz11YaBiL3+eX/coDz3D1608vNC6j63jzjq2z0vYPDacKdSvFlm+88/MODacKHYfi+h86/4yy5a2RcKFDURz/qhUL2NEXL3Qo8vPWbNjK1a8/fUy8a+7cwqoVC8bEmEjnuPa2x3n+ULyu52465+Tzh+IMjmRZt9HLgdHH/8v3P8PBeIrO1mjheOfPc7l8+9J92zkYT5WUrdu4lbf/1qIx+ZE/t2s3bOX9b1hSNocOxlN86b7t4+bnwXiqcI7z9Voj4THrW7dxK0EL8OSe/jGxf+GebTxzYKikbHS+5K/TanXGO94nsnyttu+LF675/HbWbNjC9n313c54JrK/tdQtrvP+Nywp/JHO18+f+3V3ebnaGvVy4OrXn866uyrU3biVD51/BqtWLDiW43eV5ni5vMu3m/np4nam0G4dGGLthq2857zSWPPbKteW5tf9nvOWjNnm6OuheN6N927n0HCqdBt3bml4rjX3f5t8ZvZhM9tkZpv6+vpK5u3tTxQOUl4inWNff2IyQ6y7/QPefplRdv/MKMwrrlPpffGyI6lMxTojyUzJOiutI+coWU+l2Irl3PjxFJfHk5XXX3FdVZYpN51I5zgwOPFcOVlzcv9AonDcq537vsHkmONdrf7osoNDyYrnKZHOcXQ4XTWHasnP4nNsRsV8OjKcrphP5WIvzpf8dVqtTjUnunyxajm5f6D88d4/kJzwdk7ERPa3lrrFdY7E01VzaiSVKeRAtXYiX7fwvkyOV2uXy02PbrdGxzre+vLXxHjXw+jli/O3Up3jybVqprJTsQc4tWh6oV82hnPua865lc65lT09PSXz5ne1EAuX7kYsHGBe1+R/VlhPcztjhf0qt3/5H5ctV6fS+/x0ayRUsU5rNDRmneXWETDGrKdSbHlBqy2efHlbrPL6K64rWj2mcjHO6Zh4rpysOTm3M1Zy3Cud+56OaNnjXan+6LKe9mjF8xQLB5jRGi67vuLzPl6MxefYOSrm08zWcMV8Khd7cb4UX6eV6lRzossXq5aTczvLH+/8MzCTZSL7W0vd4jqz2sJVc6olEirkQLV2Il83X1YpxyfazhS3W5VirbS+/DVRy/VQvHy5/B09fTy5Vs1Udio2AFf7o0DOA/on+jwFQO/8Tm64cnnJgb3hyuX0zu+qc7iTa3F3Gzde9Uo2PrGHT1y4tGT/rrloKT96bDcbn9jDutW9JXVuf3Q311w09n1+2U9cuJSbf76T9auXl63jzTu2zkrb726NFOpWim3t5aXzZrVGuPbiZWPqf/2hZ8uWDyfTfPJNy8bEf9fmPZzR08an3vyyknnrV/dy8893jol3/RXLuWvznjEx5j9TXNzdVtdzN51zcnF3Gx2xIGsv93Jg9PG/5qKlzG6LMDCcLBzv/Hkul2+ffNMyZrdFSsrWXt7LDx7ZNSY/8ud23epevvX/niubQ91tET75pmXj5ufstkjhHOfXO5xMj1nf2st7ybocyxd0jYn9U29+GUvntJeUjc6X/HVarc54x/tElq/VsnlthWs+v531q5ezbF59tzOeiexvLXWL63zz/z3HutXlc2rtql5u+flOhhNeDtz8852sXVWh7uW9/NNDz7LxiT3HcnxVaY6Xy7v1q3srtjOFdmtOO+tW9/IvD5fGmt9WubY0v+7vPPzcmG2Ovh6K51178TK6WyOl27hiecNzzZyr+uVYx79is+8BFwCzgf3AWiAM4Jz7BzMzvNEhlwLDwO875zaNt96VK1e6TZtKq+WftN/Xn2BeV4ze+V1N/0BcLfJPNR+OJwn7oz962qMk/NEfs9ujRPzRH4OJNK3hEP0jx0Z/HIx7TxF7oz+yzGgNjxn9cTieYnZ7lGzO0TeUZM6o0R8zW8OMFI3+aIkEiYYDxJMZIqEAndEww+ksfYNJZvujPw4MJAq9++LRH94okqLRH7EwORxHh9PM64yRyeU4OJSiLRqiIxoimckynMoSCwcZLh790RImGvZHf6SyxJMZZrdFwEpHfwyMpJnZFqEj5o3+OBxP0RELEQmNO/pjQk8tnWw5WTz6YzCRYUaLN9KipWj0RzyZYWZbmNSo0R9zOqMYcHAoxczWCPFUmu62KOlMjn2DycIdihePjHDqjBYSmRxHh726R0fSzGgN01Zl9IdzjpH86I9Emq5omMFkmg5/9EeLP/pjOJ0hnsgysy1MzkEsFCCddaWjP9oizGgtP/pjRkuYnqLRHwcGE8zpqD76oFqd8Y53DcufcE422+iPWo5XLXWL68zvHDX6I+G1BZlslkgohCsa/TGUTBEOhTgUT9LdFuVoYWSZP/qjPYozf/RHOkNLOMSBwSSndI0a/TGUpKctSjCYI5sLcMA/vpFQgN1HvVF6+ThKRn/ksoQCY0d/HB322uSgHRv90dkSZLBo9Ec6m2NOx+jRH2nao+Gy8w7HvZGAZ8/tZHf/yHHnapGKCzWsU9Eo5S4WkTo74QZcpM6Uk9JMKubj9Pivk4iIiDQ9dSpERESkLtSpEBERkbpQp0JERETqQp0KERERqQt1KkRERKQu1KkQERGRulCnQkREROpCnQoRERGpC3UqREREpC7UqRAREZG6UKdCRERE6kKdChEREakLdSpERESkLtSpEBERkbpQp0JERETqoqGdCjO71My2mdkOM/t0mfmLzOxBM/uVmW02s7c0Mh4RERFpnIZ1KswsCNwEXAacA7zbzM4ZVe0zwG3OuVcB7wL+vlHxiIiISGM18k7Fa4AdzrmdzrkUcCtwxag6Duj033cBLzUwHhEREWmgRnYqFgAvFk3v9suKXQ+818x2A3cDf1RuRWb2YTPbZGab+vr6GhGryIQoJ6XZKCelGUz1g5rvBr7lnFsIvAX4tpmNick59zXn3Ern3Mqenp5JD1JkNOWkNBvlpDSDRnYq9gCnFk0v9MuKfRC4DcA59wsgBsxuYEwiIiLSII3sVDwCLDWzJWYWwXsQc8OoOruAiwDM7Gy8ToXu24mIiExDDetUOOcywMeBe4Cn8UZ5bDWz9Wa22q/2x8AfmNkTwPeA9zvnXKNiEhERkcYJNXLlzrm78R7ALC5bU/T+KeC3GxmDiIiITI6pflBTREREThLqVIiIiEhdqFMhIiIidaFOhYiIiNSFOhUiIiJSF+pUiIiISF2oUyEiIiJ1oU6FiIiI1IU6FSIiIlIX6lSIiIhIXahTISIiInWhToWIiIjURU2dCjNrNbP/bWZf96eXmtmqxoYmIiIi00mtdyq+CSSB1/nTe4AbGhKRiIiITEu1dirOcM79FZAGcM4NA9awqERERGTaqbVTkTKzFsABmNkZeHcuRERERIDaOxVrgZ8Ap5rZd4D7gT8dbyEzu9TMtpnZDjP7dIU6V5nZU2a21cy+W3PkIiIi0lRCtVRyzt1rZo8B5+F97HGNc+5gtWXMLAjcBFwM7AYeMbMNzrmniuosBa4Dfts5d8TM5hznfoiIiMgUm8iQ0gVAEIgA55vZW8ep/xpgh3Nup3MuBdwKXDGqzh8ANznnjgA45w5MIB4RERFpIjXdqTCzbwArgK1Azi92wI+qLLYAeLFoejfw2lF1lvnr/0+8Dsv1zrmflNn+h4EPAyxatKiWkEUaSjkpzUY5Kc2gpk4FcJ5z7pwGbX8pcAGwEHjIzF7unDtaXMk59zXgawArV650DYhDZEKUk9JslJPSDGr9+OMXZjbRTsUe4NSi6YV+WbHdwAbnXNo59xywHa+TISIiItNMrZ2KW/A6FtvMbLOZPWlmm8dZ5hFgqZktMbMI8C5gw6g6d+DdpcDMZuN9HLKz5uhFRESkadT68cc/A78HPMmxZyqqcs5lzOzjwD14z0t8wzm31czWA5uccxv8eZeY2VNAFviUc+7QRHdCREREpl6tnYo+vxMwIc65u4G7R5WtKXrvgGv9l4iIiExjtXYqfuV/MdVGir5J0zlXbfSHiIiI/AaptVPRgteZuKSobLwhpSIiIvIbpNZv1Pz9RgciIiIi01tNoz/MbKGZ/auZHfBft5vZwkYHJyIiItNHrUNKv4k3HPQU/7XRLxMREREBau9U9Djnvumcy/ivbwE9DYxLREREpplaOxWHzOy9Zhb0X+8F9H0SIiIiUlBrp+IDwFXAPmAv8HZAD2+KiIhIQa2jP14AVjc4FhEREZnGah39cbOZzSianun/HLqIiIgIUPvHHyuKf47cOXcEeFVjQhIREZHpqNZORcDMZuYnzGwWtX8bp4iIiPwGqLVj8EW8nz7/gT/9DuCzjQlJREREpqNaH9S8xcw2ARf6RW91zj3VuLBERERkuqmpU2Fm33bO/R7wVJkyERERkZqfqegtnjCzIPDq8RYys0vNbJuZ7TCzT1ep9zYzc2a2ssZ4REREpMlU7VSY2XVmNgisMLMBMxv0pw8Ad46zbBC4CbgMOAd4t5mdU6ZeB3AN8Mvj3AcRERFpAlU7Fc65zznnOoAvOOc6nXMd/qvbOXfdOOt+DbDDObfTOZcCbgWuKFPv/wCfBxLHswMiIiLSHGr9+OPHZnb+6Nc4yywAXiya3u2XFZjZucCpzrl/q7YiM/uwmW0ys019fX01hizSOMpJaTbKSWkGtQ4p/VTR+xjeXYhHOTYaZMLMLADcCLx/vLrOua8BXwNYuXKlO95titSLclKajXJSmkGtQ0ovL542s1OBvxlnsT3AqUXTC/2yvA5gOfAzMwOYB2wws9XOuU21xCUiIiLNo9aPP0bbDZw9Tp1HgKVmtsTMIsC7gA35mc65fufcbOfcYufcYuBhQB0KERGRaarW76n4WyB/Oy2A97sfj1VbxjmXMbOPA/cAQeAbzrmtZrYe2OSc21BteREREZlean2m4im8jgHAUeB7zrn/HG8h59zdwN2jytZUqHtBjbGIiIhIE6raqTCzEN5vfHwA2OUXLwK+YWb/5ZxLNzg+ERERmSbGe6biC8AsYIlz7lzn3LnA6cAM4K8bHZyIiIhMH+N1KlYBf+CcG8wXOOcGgI8Cb2lkYCIiIjK9jNepcM65MeOdnXNZjj24KSIiIjJup+IpM7t6dKGZvRf4dWNCEhERkelovNEfHwN+ZGYfwPsGTYCVQAvwu40MTERERKaXqp0K59we4LVmdiHHfv78bufc/Q2PTERERKaVWr+m+wHggQbHIiIiItPY8X5Nt4iIiEgJdSpERESkLtSpEBERkbpQp0JERETqQp0KERERqQt1KkRERKQu1KkQERGRulCnQkREROqioZ0KM7vUzLaZ2Q4z+3SZ+dea2VNmttnM7jez0xoZj4iIiDROwzoVZhYEbgIuA84B3m1m54yq9itgpXNuBfBD4K8aFY+IiIg0ViPvVLwG2OGc2+mcSwG3AlcUV3DOPeicG/YnHwYWNjAeERERaaBGdioWAC8WTe/2yyr5IPDjcjPM7MNmtsnMNvX19dUxRJHjo5yUZqOclGbQFA9qmtl78X5S/Qvl5jvnvuacW+mcW9nT0zO5wYmUoZyUZqOclGZQ06+UHqc9wKlF0wv9shJm9ibgL4Dfcc4lGxiPiIiINFAj71Q8Aiw1syVmFgHeBWwormBmrwL+EVjtnDvQwFhERESkwRrWqXDOZYCPA/cATwO3Oee2mtl6M1vtV/sC0A78wMweN7MNFVYnIiIiTa6RH3/gnLsbuHtU2Zqi929q5PZFRERk8jTFg5oiIiIy/alTISIiInWhToWIiIjUhToVIiIiUhfqVIiIiEhdqFMhIiIidaFOhYiIiNSFOhUiIiJSF+pUiIiISF2oUyEiIiJ1oU6FiIiI1IU6FSIiIlIX6lSIiIhIXahTISIiInWhToWIiIjURUM7FWZ2qZltM7MdZvbpMvOjZvZ9f/4vzWxxI+MRERGRxgk1asVmFgRuAi4GdgOPmNkG59xTRdU+CBxxzp1pZu8CPg+8c6LbSqWybH6pn30DCeZ3xnj5KV1EIsF67Ma4cjnH84fi7B9IMLczxuLuNgIBK5m/s2+I5w7FiYWDzGoNA7B/MEFnLEIynSUcCnBkOM2s1jCdLUEOD2cYHMkwozWMGQwnM7RGQvQNJelujzKSytAaDRIJBImnMsSTGbrbIqRzjv6RNC3hIDNawgTMGExmOBRP0d0eoSMaYiiZ4ehwmvZoiHDQCASMwUSajliIoAU4OJRkZlsYw+gbTNEeDdEZC5Jz8FJ/glltEX85yGTh6HCKnvYoI+ks8WSWzpYwA4k0XS1hhlNe3CPpDK3hEK2RIKlsjkQ6x6F4inmdUXLOcWgozZyOKOAYSmaIhoIM+DHN64hx2ux2AHYdjrN/IEk8leHUGa3EUxl2Hx3h1BkttEZDHBxKMrczxqKZrbxweJgXDsdpj4aIBAMcGEzQ3RYlEICulsiY81RvgyMJnt7nxTu3M8rZ89roaIk1bHu1SiQyPLm3n2H/nBwcStERC9EeDRFPpWgNhxlOZxlOZmlvCTGczNDVEiYSMvpHsoSDjoAFC/vVGg5yZCRJNBSibzDJ7PYILeEg/YkMw6kMnbEQ0VCQw8MpOqJh+kdSzGiNEA0GODqSoiXinbcFXS0kszkODaXojHm5ks5lgQD7B5LM64wSCQXYc3SE7rYomVyWSDDISCZDSyjEcDpDSzjEwcEkszuiZP1lBxJpZrdFaYsGODKcKXuNwvjX8UTrNaOjIwm2F+XksnltzGhQTlY7TrUcw2p18jl8YDBJT4fXHrZEQvSPpDllRox4Mkv/iNcGHR328i2V9fLlwGCSxd2tjKSy7B9MMqcjiiOHEaBv0Dsu4WCAfQNJZraGGRhJ09kSJhR0ZLLG/oEkp3TFCBrs6U/Q0xElRxZzQQ4OefHEUxnaIl67uePAMHM6j23jwGCS+V0xAkBfPMWMlnAh1v6RFF0tEbrbgoykIZHOsm/Ai3HEb0sjoQDprONwPMnczhZ653cSCnn3BjKZHFv39rO3P8H8rhZmtIY4MJgkEgwwnMrWnK8nmuMN61QArwF2OOd2ApjZrcAVQHGn4grgev/9D4G/MzNzzrlaN5JKZblj80usuXMLiXSOWDjA+iuWc+WKUxrescjlHD/Zuo9rb3u8sO0br3oll/bOIxAwcjnHj7fs449/cGz+NRctpbstzJHhDF+671eF8k9cuJTPbtrFxy44k/ue3stPnzro7cvqc8g54/qNjxXqXnfpWQSDxmAiw5fvf4aZrRGuft1pfPn+Z44dg9W9hEMBrvvRkyVlN/1sBy8cGinE0hYJYmY45/jsj3/NsjntvOe801i7YWtJzB2xEDc9+CxHhlOsW91LLBzgz25/suy2P3HhUr6/aRcfOf9Mbn/sGd527iIe3PY8b3v1Ig7H06zbWLruW37xAkeGU1x78TKiwQCf+8mvC/OvvXgZS2bHiYSMp14aLNnOtRcv464nXuKyl88vKb/hyuX87QPPlOxnfhtrV/Vy+2O7+MAbziicp3obHEnw4y19rNlQlJOrl3PZ8p4p7VgkEhk2PLmX2za9wNtfvagkp/78srPoag2zf2CIG+/dPuZcfvyNS9m29whL580oyY11q3uJhgJ8+kfeuk7rbuEjv3NmyTk+dl5/VXSN9hIJBvif//JYxZxbMKOFL967reJ5fHDbXi48az4/fNTLsXV3HYvhDy84c0yc33n4BbYfGCq5RmH86ziv1nrN6OhIgp+WyclLlvfUvWNR7TgB4x7DasunUlk2PLm3ZD/yOfp75y1mKJnhb+7bzjtXLuIrDzwzJh+WzWnn3a89rZCfp3W38LELzmRNUa6svbyXII5rbvXydeVpXVy1clFJneJcXLe6l78vale9NuYZrlq5iIefPciuI8Njls9fE3/5b0+VxJpvvyKhAH/6w83HYlrVy4Pbnueis+eX5PUNVy7nylcsAOCOJ/bwmTu2jNmPNRufqjlf65Hjjfz4YwHwYtH0br+sbB3nXAboB7onspHNL/UXOhQAiXSONXduYfNL/ccbd82ePxQvHPz8tq+97XGePxQvzM93KPLzv3z/M7RGwnzpvu0l5V954BlWrVjAmg1bec95SwrlrZEw1/sXQL7s0HCKA4PJwh/St567sPC+cAw2bOW5g/ExZatWLCiJ5WA8Rd9QkoPxFIl0jg+df0YhaYvrHRhM8tZzF5JI51i7YSvP9sUrbju/L+vu2srVrz+ddXd5+5TOuMLFXLzu/HpvvHc7h4ZTJfNvvHc7T+7pZ3AkO2Y7N967nQ+df8aY8s/csWXMfua3kY+p+DzV29P74oVG79ix38LT+xqzvVo9ubefNRu2cPXrTx+TUwfjKZ7tixc6FPny/Ln833du4U29C8bkxtoNW9lZlGerViwYc47Lndc1dx5brlLO7egbqnoe33PeEq7feCzHimMoF+eHzj9jzDUK41/HE63XjLZXyMntDcjJaseplmNYrU4+h8vl6F//dBvPHYyzasWCwh9pKM2HD51/Rkl+5tvc4vWt27iV1mi4UHb1608fU6c4F9eOalfzbcyaDVt5+28tKrt8/poYHWu+/dpxYKg0Jj/fR+f1Z+7Ywta9/Wzd21/oUFTaj1rytR45Pi0e1DSzD5vZJjPb1NfXVzJv30CicADyEukc+wcSDY9rf4VtHxhMVJ0fT2bKlpt5/x4dThfKy9XNOe+VL88vN3p9uVH3e/LbGPe+QWoAABBPSURBVF0n/wIYqRBbzlFYtnjdlbadLx9Jees7Ek9X3e9qMedc+eNQvP7x9rN4G/ll8ufpeFTLyf0DyQo5mTzu7dXDPj+ucud4dE7lFZ/LvsHy+Vx8ziaSixPJueJY8u+PxtNl96dSDCOpTOF98bkf7zqeaL2p0iw5We041XIMq9XZV2E/8uc8nzOV8qHWXIn7uVJumeJtjn6fn863MYeGkuPmd63XSz7fR5fv60+wt7/C35qi/ciXVcvXeuR4IzsVe4BTi6YX+mVl65hZCOgCDo1ekXPua865lc65lT09PSXz5nfGiIVLdyMWDjC3s/G3medW2PacjljV+W2xUNly57x/Z/jPXQBl6wbNexWXl1vf6LtV+W2MrpN/AbRGy8cWMArLjl53tX1piXjrm9kWrrrf1WIOWPnjEAsHaI1UX2e5beRjyp+n41EtJ+d2RivkZPS4t1cP8/y4yp3jcjkFpedyTkf5fC53zmqpM5GcK44l/35GW7ji/pSbbomECu+Lz/141/FE602VZsnJaseplmNYrc68CvuRz9F8TlXKh1pzpS1y7MmASssU5+LoPM23Md3t0ar5XWn75a6XfL6PLp/XFWN+V8u4+5Evq5av9cjxRnYqHgGWmtkSM4sA7wI2jKqzAXif//7twAMTeZ4C4OWndLH+iuWFA+F9XrucFad0nVj0NVjc3caNV72yZNs3XvVKFne3FeZ/8R2l86+5aCnDyTSffNOykvJPXLiUuzbvYf3qXr7z8HOF8uFkmusv7y2pO6s1Qk9HlGsuWkosHOD2R3cX3heOwepelsxuG1N21+Y9JbHMbovQ0x5ldluEWDjA1x96tvDMRHG9OR1RfvTYbmJh7/PpM3raKm47vy9rV/Vyy893snaVt0/hoLH28rHrzq/32ouX0d0aKZl/7cXLePmCLjpiwTHbufbiZXz9oWfHlN9w5fIx+5nfRj6m4vNUb2fPa2P96lE5uXo5Z89rzPZq9fL5XaxfvZybf75zTE51t0U4vaeNay8un5f/54rl3Lt1z5jcWLe6l9OL8mzjE3vGnONy53X9FceWq5RzZ/a0Vz2P33n4Oa6/vJeb/RwrjqFcnP/00LNjrlEY/zqeaL1mtKxCTi5rQE5WO061HMNqdfI5XC5H/+SSl7Fkdhsbn9jDJy5cWjYfvv7QsyX5ufEJr80tXt/ay3sZTqYLZTf/fOeYOsW5uG5Uu5pvY9av7uWHj+wqu3z+mhgda779OnNOe2lMfr6PzusbrlxO7/wueud3csOVy6vuRy35Wo8ctwn+DZ8QM3sL8DdAEPiGc+4vzWw9sMk5t8HMYsC3gVcBh4F35R/srGTlypVu06ZNJWX50R/5p1VXTMHojwODCeZ0jD/6Y2ZrGAMODCboKBr9cXQ4zUx/9McRf/RHV7nRH21REukMLZEgkWB+9EeW7rYw6ZxjYDhDLBI4NvojleHwUIpZbRE6Yt7oj/7hDG3RYGH0x1DCmw4FAhwcSjGzLYQ5oy/ujf7oiAZxo0d/GGRycHQ4TU97pObRH+lsjpG0N/pjbkcUh+NwPE1PexTDMZjMEAkFGUxkaI8GmdcZY/Go0R/DqQwL/dEfe46OsGBGC23REIfiSeZ0HBv9setwnLbC6I8ks9oihALQOf7ojwk9dVcuJ6fr6I+WcJiR/OiPWMgfwREmGjYG/NEfZkEODCSZM87oj5FUlvZYkFjJ6I80M1rD3uiPRMobsVE0+uOwn3NtRaM/8tuKlhn9kchkiIa8HMuva3Z7lKzLgvNGf3S3RWmvcfRHpet4ovUa4IRzcipGf5Q7TrUcw2p1qo3+mN8VYziVpT+Rpis2avRHIMiBoSSLZ7Uykh41+sMF6BvypiMhf/RHS5jBZJqOWJhw0JH2R3/M74oRKhr94chCpdEffcMlI0wODCaZ1+mNHjkYT9Hlt5edsWOjQIpHf+wfSPqj67y2NBoOkMo4DsdTzO2M0ju/a8zoj339CeZ1xpjRFqZvMEn4OEd/jJPjlRvPRnYqGqHcxSJSZyfcgIvUmXJSmknFfJwWD2qKiIhI85t2dyrMrA94ocLs2cDBSQynGsVSXrPEUi2Og865S2td0TTKyUqmQ4wwPeJsVIy/aTl5ok72fZzq/auYj9OuU1GNmW1yzq2c6jhAsVTSLLFMVhzNsr/VTIcYYXrEqRibw8m+j828f/r4Q0REROpCnQoRERGpi5OtU/G1qQ6giGIpr1limaw4mmV/q5kOMcL0iFMxNoeTfR+bdv9OqmcqREREZOqcbHcqREREZIqoUyEiIiJ1cdJ0KszsUjPbZmY7zOzTk7zt583sSTN73Mw2+WWzzOxeM3vG/3dmg7b9DTM7YGZbisrKbts8X/GP0WYzO3cSYrnezPb4x+Zx/6vb8/Ou82PZZmZvrnMsp5rZg2b2lJltNbNr/PJJOTZTmY/VTPS4THGsQTP7lZnd5U8vMbNf+sf0+/5vCk1lfDPM7Idm9msze9rMXteMxzGvWXPyRE1l+9sozdSuT5hzbtq/8H5b5FngdCACPAGcM4nbfx6YParsr4BP++8/DXy+Qds+HzgX2DLetoG3AD/G+4rV84BfTkIs1wN/UqbuOf55igJL/PMXrGMs84Fz/fcdwHZ/mw0/NlOdj/U8LlMc67XAd4G7/Onb8H4fCOAfgI9OcXw3Ax/y30eAGc14HP1YmjYn67BvU9b+NnCfmqZdn3DsU33w6nQCXgfcUzR9HXDdJG6/XFJvA+b77+cD2xq4/cWjkq/stoF/BN5drl4DY7me8p2KknME3AO8roHH6E7g4sk4NlOdj/U8LlMY10LgfuBC4C6/wTwIhMod4ymIrwt4Dv9h93J50wzHsSiuaZOTx7FvU9r+NnC/mqZdn8jrZPn4YwHwYtH0br9ssjjgp2b2qJl92C+b65zb67/fB8ydxHgqbXuqjtPH/dty3yi6DTlpsZjZYrxfwv0lk3Nspjofa1LjcZkqfwP8KZDzp7uBo865jD891cd0CdAHfNP/iOafzKyN5juOedMiJ49Ts7W/jdJs7XpZJ0unYqq9wTl3LnAZ8DEzO794pvO6j1Mydncqt+37KnAG8EpgL/DFydy4mbUDtwP/yzk3UDyvCY7NlGnm42Jmq4ADzrlHpyqGGoTwbk9/1Tn3KiCOd0u6YKqP42+Qpm1/G6WZ9+lk6VTsAU4tml7ol00K59we/98DwL8CrwH2m9l8AP/fA5MVT5VtT/pxcs7td85lnXM54Ot4x2ZSYjGzMN4fzu84537kF0/GsZnSfBzPBI/LVPhtYLWZPQ/civcRyJeBGWYW8utM9THdDex2zv3Sn/4hXiejmY5jsabOyRPRhO1vozRNu17NydKpeARY6j8dHgHeBWyYjA2bWZuZdeTfA5cAW/ztv8+v9j68z64nS6VtbwCu9p8WPg/oL7qd1hD5i8D3u3jHJh/Lu8wsamZLgKXAf9Vxuwb8M/C0c+7GolmTcWymLB/HcxzHZdI5565zzi10zi3GO3YPOOfeAzwIvN2vNtUx7gNeNLOX+UUXAU/RRMdxlKbNyRPRpO1vozRNu17VVD+MUq8X3hOw2/GecP6LSdzu6XhPUj8BbM1vG+8z4PuBZ4D7gFkN2v738D5WSOP97+mDlbaN97DbTf4xehJYOQmxfNvf1ma85J9fVP8v/Fi2AZfVOZY34N0e3Aw87r/eMlnHZqrysd7HZapfwAUcG/1xOl7HcwfwAyA6xbG9EtjkH8s7gJnNehz9eJsyJ09wn6a0/W3gfjVNuz7Rl76mW0REROriZPn4Q0RERKaYOhUiIiJSF+pUiIiISF2oUyEiIiJ1oU6FiIiI1IU6FU3KzOaa2XfNbKf/9bO/MLPfNbML8r/aKNKMzCzr/2LkE2b2mJm93i9fbGbOzG4oqjvbzNJm9nf+9PVm9idTFbtMrnFyZct4y9e4jZ+Z2Ur/ff4XTTeb2U/NbF49tiHHqFPRhPwvKLoDeMg5d7pz7tV4X1azcGojE6nJiHPulc65V+D9cNXniuY9B/z3oul34H2/gPxmqpYrjfJG59wKvO8Y+fPiGf4XSE3K38Wib4c9qahT0ZwuBFLOuX/IFzjnXnDO/W1xpdH/qzOzLf6PRGFmV/u98SfM7Nt+2WIze8Avv9/MFvnl7/CXfcLMHvLLgmb2BTN7xK//Pxu+13Iy6gSOFE0PA0/n/+cIvBPvJ81FRucKAGYWM7Nv+ncYfmVmbxynvMXMbjWzp83sX4GWCtt7CDjTbxe3mdkteN/GeaqZfaqo7Vvnr7fNzP7Nbye3mNk7/fL/a2ZP+XX/2i/7lpnlv/0VMxvy/73AzP7DzDYAT52M7exJ2VM6CfQCjx3vwmbWC3wGeL1z7qCZzfJn/S1ws3PuZjP7APAV4EpgDfBm59weM5vh1/0g3te9/paZRYH/NLOfOueeO9645DdGi5k9DsTwfqL5wlHzb8X7ivb9QBZ4CThlckOUJjFergB8DO83tF5uZmfh/SLpsirlHwWGnXNnm9kKKrelq/C+gRK8nwl4n3PuYTO7xJ9+Dd63VW4w70fKeoCXnHP/HcDMusysG+/nB85yzrmi9rOac4HlzrnnzPtV1ZOqndWdimnAzG7ye8eP1LjIhcAPnHMHAZxzh/3y1wHf9d9/G+8rmwH+E/iWmf0BEPTLLsH7PvnH8X4auxvvQhMZT/6W9lnApcAt/kd6eT8BLsb7SO/7UxGgNI3xcgW8dupfAJxzvwZeAJZVKT+/qHwz3teoF3vQb9c6OfZxywvOuYf995f4r1/hdUjOwmv7ngQuNrPPm9l/c871A/1AAvhnM3sr3p248fxXUafhpGtndaeiOW0F3pafcM59zMxm430GWCxDaccwdjwbc859xMxei/dZ96Nm9mq8HvofOefuOZ51igA4537h525PUVnKzB4F/hg4B1g9VfFJ8yiXKw3yxvx/uAD8uwvxovkGfM4594+jFzSzc/F+Q+UGM7vfObfezF6D94Nybwc+jvefukLb7D+jESlazehtnVTtrO5UNKcHgJiZfbSorLVMvefxbqXlk31J0fLv8G/NUfTxx8/x/ncI8B7gP/z5ZzjnfumcWwP04f2M7j3AR837mWzMbJl5vwIoUjP/tnQQODRq1heBPyu6iya/4arkyn/gtVf4H28swvsRwkrlDwH/wy9fDqyYYCj3AB8ws3Z/HQvMbI6ZnYL3scq/AF8AzvXrdDnn7gY+CbzCX8fzwKv996uBcJVtnVTtrO5UNCH/s7krgS+Z2Z/i/aGPA382qurteLfOtuLdOtvuL7/VzP4S+Hczy+Ldxns/8EfAN83sU/46f99fzxfMbCler/l+vF/82wwsBh7zb0f24T1/ITKe/Ofk4OXU+5xz2eK72s65rWjUh9SQK8DfA181syfx7gC83zmXNLNK5V/Fa+eeBp4GHp1IQM65n5rZ2cAv/DiGgPcCZ+K1lTm8Xw/9KNAB3GlmMT/+a/3VfN0vfwLv47445f0TJ1k7q18pFRERkbrQxx8iIiJSF+pUiIiISF2oUyEiIiJ1oU6FiIiI1IU6FSIiIlIX6lSIiIhIXahTISIiInXx/wEJbSrYrd6WOwAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"source": [
"### Cleaning the data"
],
"metadata": {
"id": "jS7nwJZLtOA5"
}
},
{
"cell_type": "code",
"source": [
"dataset.isnull().sum()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "q4TVGnRLs6tF",
"outputId": "c03e84a4-4ce4-4233-f116-dc5d19d5b610"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Pregnancies 0\n",
"Glucose 0\n",
"BloodPressure 0\n",
"SkinThickness 0\n",
"Insulin 0\n",
"BMI 0\n",
"DiabetesPedigreeFunction 0\n",
"Age 0\n",
"Outcome 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "code",
"source": [
"dataset.isna().sum()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LsxsmyX1tTUD",
"outputId": "5e8c7bf2-0323-4dbb-bbde-8824994a0611"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Pregnancies 0\n",
"Glucose 0\n",
"BloodPressure 0\n",
"SkinThickness 0\n",
"Insulin 0\n",
"BMI 0\n",
"DiabetesPedigreeFunction 0\n",
"Age 0\n",
"Outcome 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "markdown",
"source": [
"### Predicting the data"
],
"metadata": {
"id": "B0nNQ18TtXSQ"
}
},
{
"cell_type": "code",
"metadata": {
"id": "HJHDRehCtUq2"
},
"source": [
"# independent variables(x): Glucose, BloodPressure \n",
"# dependent variables(y): Outcome\n",
"x= dataset.iloc[:, [1,2]].values\n",
"y= dataset.iloc[:, 8].values "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# training \n",
"x_train, x_test, y_train, y_test= train_test_split(x, y, test_size= 0.25, random_state=0) \n",
" \n",
"# normalisation \n",
"st_x= StandardScaler() \n",
"x_train= st_x.fit_transform(x_train) \n",
"x_test= st_x.transform(x_test) "
],
"metadata": {
"id": "3SlR994Nt4Cs"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "g11flr1HtUrE",
"outputId": "811d9be0-8889-4b8f-bfe4-782f3795bdcd"
},
"source": [
"classifier= DecisionTreeClassifier(criterion='entropy', random_state=0) \n",
"classifier.fit(x_train, y_train) "
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"DecisionTreeClassifier(criterion='entropy', random_state=0)"
]
},
"metadata": {},
"execution_count": 20
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tsJxJeF5tUrJ"
},
"source": [
"y_pred= classifier.predict(x_test) "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 261
},
"id": "A351oarMtUrL",
"outputId": "cb4d3293-e236-4233-a444-6973cb65c0b8"
},
"source": [
"# confusion matrix \n",
"cm= confusion_matrix(y_test, y_pred) \n",
"cm\n",
"fig, ax = plot_confusion_matrix(conf_mat=cm, figsize=(3, 3), cmap=plt.cm.Greens)\n",
"plt.xlabel('Predictions', fontsize=18)\n",
"plt.ylabel('Actuals', fontsize=18)\n",
"plt.title('Confusion Matrix', fontsize=18)\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 216x216 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANQAAAD0CAYAAADjcgguAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaUUlEQVR4nO3deZgU1bnH8e+P3QVUQJYYBb0KCi4gCBr1SoIoJiZITBRjvBI17oma5Cqa4BLFNYsx4kKuhCQGtyQuMUYRWVQQXBEUFYmCbLIJCAIywHv/ODXYND1D98wZamp4P8/TT02fOlX1dk+9fapObTIznHNx1Es7AOfqEk8o5yLyhHIuIk8o5yLyhHIuIk8o5yLyhKoBkrpIek7SMkkm6doaWs7AZP69amL+dUnyPY2o6eXUqYSStKOkSyW9IOkTSWWSFkp6Kln5GmyDGBoAfwf2AwYDZwD/qOnlpkVS+2RlNUlPVlCnoaTFSZ1Z1VjWSTX14xSL6sqBXUn7Av8COgCjgVHAEqAVcGzyus3MLq/hODoA7wE/NbPf1PCy6gMNgXVmtrEml1VJDO2BD4G1SSx7mtmCvDonA39L6iw0s/ZVXNYI4EwzUxWmbQJsMLOyqiy7WDX+i70tSNoBeBLYBzjZzPJbhFskHQYctg3CaZMMP6npBZnZBmBDTS+nSE8CJxFa5Fvzxp0FTAXqAztvq4CS9aLMzNab2dptslAzy/wL+BFgwM0lTncSMAH4DFiV/N2vQL1ZwDhgf0IruBJYQfjVbZNTb1wSR/6rPTAw+btXgfmPA2bllX0F+DfwMeGXfR7wFHB4Tp2C8wRaAkOBOcC6ZDgUaJFXr3z6rwE/A/4DfA7MILQExXyH7ZN53Ak8DryTN74tsB64FHirwOfsAYxIlrk6+W4nAP0LfEeFvtuByfgRyfvdgeHAQmAj0D4Zb8CInPldmJQNzlvOl4DFwDvATqWui3WihQK+kwyHFTuBpAsJK9m7wC+T4oHAY5LOM7P8ee1B+Kc+CvwvcAhwHtAMOC6pM4SwMlyVxPJCUr64+I8CkjoCzxKS6XeElaM1cFSy3EmVTLsLMBHYl7BivQ50BS4Aviaph5mtzJvsRmAH4F5CQl0AjJA008wmlBD6cML3d4SZvZSUnUloRe8HzikwTX/CD9XDwGygRTLNPySdbmYjk3pDCPv8RxNawXIT8+ZX/r1dD+xE+KHcgpndJak3cI2ksWb2oqR6wF+BpsCxZvZZ8R/9ixln/gUsBVaUUH+35IueCTTLKW9G+JVeCeya10IZcErefIYm5R1zynqR88u5tdYk59d3Vs77Hyd1e2zlc2wxT8KKZ8CFeXUvSsqvLzD9G0CjnPI9CIn1QBHfZXu+aKEaEFbmYTnj3wP+lvxdqIXaohUAdkymm55XPiKssgXjGJHEcX8F4zdroXLWg1nAR8nfg5N6F1d1XawrvXzNCElQrD6EX687zOzT8sLk7zsI2/nH5k0z38wezisbkwz3Ky3crVqRDPslO9Ol6E9oEfNb2HuT8v4FprnLzNaVvzGzeYRNsJI+l5mtB/4CnCppB0lHEjqJhlcyzaZWIOmlbUFIqDHAAZKalRID8KsS4l0GfI+wWfpv4BrgCTO7s8RlblJXEupTQjNdrL2T4dsFxpWX7ZNX/kGBukuTYYsSll2MBwk9lVcBn0gaI+kKSe2KmHZv4L1k5d4keT+DLT8XVPzZqvK5/kj4gTuZ0BkxH3imosqSWkkaJmkhYV92CSHxz0+q7Fri8meUUtnMJgK3AD2T5Z5V4vI2U1cS6i2gmaRCK0sslfWmFdONW9nxic32Zc3sczPrQ/gn35Qs+5fAu5IKtTDVVdFnK7l72symA5MJm5inAH+20Bu55cwlEQ5vnAn8CTgV6EvYgijfdyppHTWz1aXUl9QIOD552xzYq5Tp89WVhPp7Miy001tI+S9y5wLjOuXViaW8G715gXF7FyjDzF42s+uT5NqX8At+w1aW8wHQMf8gdvK+A/E/VyHDgcMJm84Vbu4BBxM6WW42s8vN7GEze8bMRhO62PPVxEHTm4DuwOWELZ0HJe1U1ZnVlYT6P8JO7M8k9StUQVK3pGcPQk/QZ8CPJDXNqdOU0AW/KqkTU/mmyGb7ZpJOI3TV5pa1LDD9XMImSaGEzPUYoes4/8flh0n5o0XGWx0PAtcBl5jZ+5XUK2+5NmsJJR1I4X29Vcn4rX0HRZF0AnAZ8Cczuw34AeFHp8r7UHWi29zMVks6kXCM6DFJowgJsZSwEn2V0KzfmtRfLulyQi/d5JxzvAYSWoLzzGwFEZnZe5JGA+clmzpTgC6EFWcm4SyDcr+QdBzhYOmHhBXum4Tu5fyDpvluBb4LDJV0KKEHrytwNuFHZ2vTV1vSuXNtEVXfIeyzXi6pvGevA+FwxDSgW179ScDFwF2S/gWUAZPN7MNSY5TUlrCZ+X4yT8zsSUm/Ay6R9IyZPVjqfFPv8o75IvQOXQa8CCxLvvCFhEQ7A6ifV78/4TjGZ8lrInBSgfnOAsYVKO9FXhd5obKccW2ARwibFqsIPUsHsGW3eS/goWS5awibi5MJrY5y6g2k8IHd3YG7CK1aWTIcCrTMq1dw+mTcZjFV8p23T+ZxZxF1C3Wbt0u+k8WEA7svJ/+Xa5P5ts+pW4/QizeX0LptcWC3kmVv6jZP5jOacMC8S169RoRjdyuAvUtdB+vMuXzO1QZ1ZR/KuVrBE8q5iDyhnIvIE8q5iDyhnIvIE8q5iDyhnIvIE8q5iDyhnIvIE8q5iDyhnIvIE8q5iDyhnIsoU9dDqVE9o0mmQq6VDu1wYNohZN7sWR+xZMmSLW4RkK21s0kD6Nkq7Sgyb8LTL6YdQuYd2fOoguW+yedcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCeVcRJ5QzkXkCVWC+376KxY+PIVpw0ZvKtut6a6MunkkM0a8wKibR7LrzrsAcMzBR7D8sem8cc8zvHHPMwz+/qVphV1rzZkzl+N7n0DXg7px6MHdufOOoQDccN0Q9tlrX3p2O5ye3Q7n6aeeTjnS4qWaUJL6SnpP0kxJg9KMpRgjRj1C36u+v1nZoFMv4rk3JtBh4NE898YEBg24aNO4F6a9TNfzj6fr+cdz/f23b+twa70GDepz82038sa01xg/YSz33j2Md6a/A8CPLrmYya9NYvJrk+j79b4pR1q81BJKUn1gKHAC0Ak4TVKntOIpxgvTJvPJyuWblfX7ynH86dlHAPjTs49w0leOTyO0TGrbti1dD+0KQNOmTdl//47Mnzc/5aiqJ80Wqgcw08w+MLN1wINAvxTjqZLWu7Xk408WAfDxJ4tovVvLTeOO6NSNKfeM4qkhf6FTuw5phZgJs2fNZsqUNzms52EA3HPXvRzWtQfnnXM+y5YtSzm64qWZUHsAc3Lez03KNiPpXEmvSnqVso3bLLiqMjMAXp85jXan96TL+cfx+8f/yGPX3ZdyZLXXqlWrOO2U73Hbb26lWbNm/PD8c5g+4y0mvzaJNm3aMOh/r0w7xKLV+k4JMxtmZt3NrDsNa1+4C5ctoU3zVgC0ad6KRcuXArBy9So+W7sagH+/PIaG9RvQotluqcVZW5WVlXHad7/Hqaedykn9wwZK69atqV+/PvXq1eOsc37Aq6+8mnKUxUtzDZ0H7Jnz/stJWaY88dKznNnnuwCc2ee7PD5xFACtd9t9U53DOnahXr16LP00O5su24KZcf4PL6DjAR255LIfbypfsGDBpr8ff+wJOnXunEZ4VdIgxWW/AuwnaW9CIg0AvpdiPFs18qo76XXwEbTcpTlzRr7CNX/+NTc/eCcPD76Hs08YwOyFcznlhgsA+M5/f4MLTjyD9Rs2sGbdWgYMuTDl6GufiRNeYuT9D3DgQZ3p2e1wAK67/loefugRpr45FUm0a9eO3999R8qRFk/l2/ypLFz6OnA7UB8YbmZDKq3frJHRs9U2ia0uW/P0jLRDyLwjex7Fa6++rvzyNFsozOwp4Kk0Y3Auptq3l+9chnlCOReRJ5RzEXlCOReRJ5RzEXlCORdR0QklqYekH+aV9ZM0TdI8STfGD8+5bCmlhboG+Fb5G0l7AQ8AbYAVwBWSfhA3POeypZSEOgR4Mef9AEBAFzPrBIwCzo0Ym3OZU0pCtQAW5rw/HnjezMpPaH0C2C9WYM5lUSkJtRxoDSCpMXA48HzOeAN2iBeac9lTyrl8U4BzJI0G+gNNgGdyxu/N5i2Yc9udUhLqesJ+0suEfadnzSz3yq8TgckRY3Muc4pOKDObKOlQwr7TCsI9IACQ1IKQbI9Gj9C5DCnp8g0zmwFscTGNmS0FLosVlHNZ5WdKOBdRhS2UpDFVmJ+ZWe9qxONcplW2ybcPoSvcOVekChPKzNpvwzicqxN8H8q5iDyhnIuopG5zSbsBZwM9gd3YMiG9U8Jt14pOKEntgAnAlwgHdpsBn/BFYi0BPquBGJ3LjFI2+W4AdgV6E84qF3AqIbFuAlYCR8cO0LksKSWhegN/MLOxfNGdLjNbbWY/B6YBt8QO0LksKfV6qLeSv8uSYe7lGs8CfWIE5VxWlZJQi4Hmyd8rgbVA+5zxjfDrodx2rpSEeptwGTwWnjDwMnChpL0ktSdc/v5u7ACdy5JSus0fB34qaQczWwP8knCB4YfJeAO+HTk+5zKllOuh7gLuynk/RtIRhGc6bQAeNbOJ8UN0Ljuq9Tib5Ird7Dyv0bka5qceORdRKWdKDC+impnZ2dWIx7lMK2WTb2ARdYxwrp9z26WiN/nMrF7+C2gIdAT+AEwinNfn3Harup0SG4D3gfMk/ZNw6tEFMQIrpMt+nRn/1Niamv12Y/nnS9MOIfPWb1xfsDxmp8TTwMkR5+dc5sRMqObAzhHn51zmVGuTD0DSrsCxhPvyvVbtiJzLsFK6zTdS8V2QRLjY8CcxgnIuq0ppof7MlgllhESaATxgZitjBeZcFpVyLt/AGozDuTqhlGfsXi3pwErGd5Z0dZywnMumUnr5rgUOrmT8gYTn8Dq33YrZbd4EKHy0y7ntRKX7UJKaEe50VK5F8vT3fM2B04E5EWNzLnO21ilxGVC+X2TA7cmrEAGXR4rLuUzaWkKNS4YiJNajwNS8OgasAib5Fbtue1dpQpnZeGA8bLpz7D1m5s/Rda4CpRyH+kFNBuJcXVDKcaiLJI2uZPwoSefFCcu5bCql23wg4dqniswAzqpWNM5lXCkJtR/h/uUVeTup49x2q5SEakg4eFuRJlsZ71ydV0pCzaDyhwEcB/yneuE4l22lJNQDwHGSrpfUqLxQUkNJ1xESamTsAJ3LklKuh/otcALwc+ACSeUPBtifcOrRC8Cv44bnXLaUchuxMkIrNAiYC3RNXnMIpxz1JpxR4dx2q6Szzc2szMxuNbMuZrZT8uoKjAXuAObXSJTOZUSVb9IiqTnwfcKxp4MIrdOMSHE5l0klXw8l6XhJDwHzCPtVjYHrgIPMbP/I8TmXKUW1UMkTCs8CzgS+DCwB/kZ4NtTPzewfNRSfc5lSaQsl6XRJzwEzgSsIz4LqD+xBuCTeOyGcy7G1FuovwAfApYTbhG26KbbkueRcvq3tQ31OeNJ7P6CvJH/Ku3OV2FpCtSW0Ti0IrdXHku6T9N/45p5zW6g0ocxsuZndaWaHAt2B+wn7UGOBFwmXv+9S41E6lxGlnCnxupldRGi1ziBcrgHwf5KmSPqFpM41EaRzWVHycSgz+9zMRppZb+C/gCGEJxf+EngzcnzOZUq1bnRpZrPM7GpCx8XXAT8e5bZr1X4+FIRHvxOeYPh0jPk5l1Uxb8Xs3HbPE6qK5s6Zy4l9vkmPgw+n5yFHcPfv7wFg6pRp9D6qD0d1P5pjDv8qr73iD3WsTPPGrWjRpDUtmrRh54bNNhvXtOGutNphj5Qiq5oom3xVIWk4cCKwyMwqfExObdWgQQNuuPUGunQ9hJUrV3JMz6/y1d69uPqqaxj0i8vp07cPo/49iquvvIZ/jX4y7XBrrWWfL8aS5/g1b9yKhvXWUrZxHQ3qNaSesvd7n2bEI4C+KS6/Wtq0bUOXrocA0LRpUzru34H58xcgiU8/DQ9y/HTFp7Rp2ybNMGs92/RQTG12OlvThruyct3ydIKqhtRaKDN7PjmLPfNmz/qIqW9OpXuPbtz8qxv59oknM3jQYDZuNEaN936arWnRpDX11YDV61dRtnEdOzbYmc83rGEjG9MOrWS1vk2VdK6kVyW9unTJkrTD2cKqVas449T/4aZf3USzZs24b9hwbrztRqZ/8DY33jaEi8/7cdoh1npL1y5k8Zr5NKzXiIb1GtOk/o6sXr8q7bCqRKHHO6WFhxbqyWL3obp262rjJ42t0ZhKUVZWxiknDaB3n69x8aUXAbBny734aPFsJGFm7NmyHXOXfpRypJtbXVY7ny2+U4PQKbFjw50hWS/rqT4bbD1L1n6cZmhbOP6ob/Dm61O3OJ+11rdQtZWZcfG5P6Lj/h02JRNAm7ZtefH5CQCMH/s8++y7T1oh1nqiHtp0jrVoXL8J6zeuY/Ga+Sxeu4DFaxdgWK1Lpsqktg+VdZMmTuLBvz5E5wM7cVT3owG4+vrB3HHP7VzxkyvZsH49jZs04Xd3V/R8Oldf9dmlcfPknVi7fjWfb1ybakzVlWa3+QNAL6ClpLnANWZ2X1rxlOqII49gxbplBcc9P3nctg0mo9ZbGUvXLqy0zqI187ZRNHGk2ct3WlrLdq6m+D6UcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxF5QjkXkSeUcxHJzNKOoWiSFgOz046jEi2BJWkHUQdk4XtsZ2a75xdmKqFqO0mvmln3tOPIuix/j77J51xEnlDOReQJFdewtAOoIzL7Pfo+lHMReQvlXESeUJFI6ivpPUkzJQ1KO54skjRc0iJJb6UdS1V5QkUgqT4wFDgB6AScJqlTulFl0gigb9pBVIcnVBw9gJlm9oGZrQMeBPqlHFPmmNnzwCdpx1EdnlBx7AHMyXk/Nylz2xlPKOci8oSKYx6wZ877LydlbjvjCRXHK8B+kvaW1AgYADyRckwuBZ5QEZjZeuBi4BngHeBhM3s73aiyR9IDwEtAR0lzJZ2ddkyl8jMlnIvIWyjnIvKEci4iTyjnIvKEci4iTyjnIvKEyihJ7SWZpGsrK6upZbnCPKFKJKlXsnLlvlZJek3SJcmZ55mTJM21krqkHUuWNUg7gAx7AHgKEPAlYCBwO9AZODelmGYDOwDrqzBte+AaYBYwJeJ8tyueUFX3upndX/5G0t2EsyTOkTTYzBbmTyCpqZmtrKmALBylX5uV+dZFvskXiZl9SjhtRsA+kmZJGiepq6RnJK0AppbXl7SfpL9IWiBpXVL/Nkk75c9b0lGSJkhaI2mhpDuBnQvUq3BfR9LJSTzLJa1Ori6+Q1IjSQOBsUnVP+Zsyo6rbL6SGki6QtJ0SWslLZX0qKSDKopL0omSXknqL0g+c4O8+p0lPSJpnqTPJX0saaykbxTxr0iVt1CRSBKwb/K2/K6newFjgEeAv5MkgaRuSfly4F7CmemHAD8GjpR0jJmVJXV7AqOBlcAtyTQDgD+XENsQ4CpgOvBbYAHwX8DJwNXA88CNSZ1hwAvJpFu0snn+CpwCPAvcDbQBLgJeknS0mb2RV//rwIXAPcBwwkWYPwOWJctHUovkuyGpN5twJ9nuQE/gX8V+7lSYmb9KeAG9ACOsiC2B3YGDgT8k5S8l9WYl788pMI83gXeBpnnl/ZNpBuaUTQTWAR1yyhoBLyd1r80pb1+grEdSNgZokrc88cX5nL3yl72V+fZJyh4qn0dSfghhX+uFAtN/BrTPW/5bwIKcsm8ldU9J+39dlZdv8lXddcBiYBEhQc4iXLJxUk6dT4A/5k6UbA4dDIwEGktqWf4CXiSsdMcldVsBRwCPm9mM8nlYuMz+t0XGeXoyvNLMNtsPskSR88nXPxkOyZ2Hmb0J/BM4SlL+vb8fM7NZucsnbGq2kVS+CbsiGZ4gqVkVY0uNJ1TVDSP8Sh9LWOl3N7N+tnlnxH/MbEPedAckw/KEzH0tAnYCWid19kmG7xZY/vQi49yP8Iv/ZpH1i7U3sJHQEZPv7Zw6uT4oUHdpMmwBYGbjCZuzA4Elyb7jdVm56Y3vQ1Xd+2Y2eit1VhcoUzL8NfB0BdMtq3JUhVnySlv+j0uu8u8FMztT0m2Eu0gdDfwU+LmkS83szhqOsVo8oba995PhhiIS8sNkuH+BccX+Ys8grJiHEPa7KlJqwn1A2MI5gJzey7zYPqSKzOwtwv7VbZJ2BSYDN0saWo3N1Brnm3zb3huEFeV8Sfvkj0y6opsDJJuPk4B+kjrk1GkEXFbk8kYmwxuT6fKXV94yrEqGzYuc72PJ8MqceSDpQELHwotmtrjIeeXG01zSZuulmS0nJOeOQJNS57kteQu1jZmZSTqD0Os2VdJwwj7HjoRu928DVxJu+gjwE2AcMEHSUL7oNi/qf2dmL0u6BbgCeF3SQ8DHhP2b7xB6AZcT9slWAhdKWp2ULTKzMRXM91lJDyex7CbpSb7oNl9LOARQFf8DXCbpUWAmUAYcAxxPuLXAmirOd5vwhEqBmU2R1JWQON8CzieszLMIifRcTt2XJPUBbgYGEXrB/kY47jOtyOUNkvQm4b4XlxO2TOYQTp1andRZI2kAcAPhFKrGwHi+OCZUyOnA64QOhF8TeijHA4PNrKjYChgHdAVOBNoS9rs+JByvqtX7T+D3lHAuKt+Hci4iTyjnIvKEci4iTyjnIvKEci4iTyjnIvKEci4iTyjnIvKEci4iTyjnIvp/9JO3XFGKJj0AAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hzeiH_HEtUrN",
"outputId": "230b7a6d-51e1-4556-eacd-4fd38b114512"
},
"source": [
"print('Accuracy on the training data is {:.2f}%'.format(classifier.score(x_train, y_train)*100))\n",
"print('Accuracy on the test data is {:.2f}%'.format(classifier.score(x_test, y_test)*100))\n",
"\n",
"print(\"\\nr2 score:\",classifier.score(x_train,y_train))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Accuracy on the training data is 95.49%\n",
"Accuracy on the test data is 72.40%\n",
"\n",
"r2 score: 0.9548611111111112\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print('Mean Absolute Error:',metrics.mean_absolute_error(y_test,y_pred))\n",
"print('Mean Squared Error:',metrics.mean_squared_error(y_test,y_pred))\n",
"print('Root Mean Squared Error:',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cyNNfTdUxR_p",
"outputId": "7d289745-9c60-4a67-ac6c-46d398c9bf95"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mean Absolute Error: 0.2760416666666667\n",
"Mean Squared Error: 0.2760416666666667\n",
"Root Mean Squared Error: 0.5253966755382705\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 350
},
"id": "YwWEhPv-tUrP",
"outputId": "0ce38eca-11f0-4726-b0a9-28f9ad3aba29"
},
"source": [
"# visualising the trianing set result \n",
"x_set, y_set = x_train, y_train \n",
"x1, x2 = np.meshgrid(np.arange(start = x_set[:, 0].min() - 1, stop = x_set[:, 0].max() + 1, step =0.01), \n",
"np.arange(start = x_set[:, 1].min() - 1, stop = x_set[:, 1].max() + 1, step = 0.01)) \n",
"plt.contourf(x1, x2, classifier.predict(np.array([x1.ravel(), x2.ravel()]).T).reshape(x1.shape), \n",
"alpha = 0.75, cmap = ListedColormap(('purple','green' ))) \n",
"plt.xlim(x1.min(), x1.max()) \n",
"plt.ylim(x2.min(), x2.max()) \n",
"for i, j in enumerate(np.unique(y_set)): \n",
" plt.scatter(x_set[y_set == j, 0], x_set[y_set == j, 1], \n",
" c = ListedColormap(('purple', 'green'))(i), label = j) \n",
"plt.title('Decision Tree Algorithm (Training set)') \n",
"plt.xlabel('Age') \n",
"plt.ylabel('Estimated Salary') \n",
"plt.legend() \n",
"plt.show() "
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"*c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.\n",
"*c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value-mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword-argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.\n"
]
},
{