-
Notifications
You must be signed in to change notification settings - Fork 0
/
monteCarloMatrixMultiply5.py
58 lines (58 loc) · 2.02 KB
/
monteCarloMatrixMultiply5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import numpy as np
from random import randint, random
from scipy import optimize
from time import time
def monteCarloMatrixMultiply2(A,B):
n = len(A)
C = [[{} for j in range(n)] for i in range(n)]
D = [[{} for j in range(n)] for i in range(n)]
AB = [[0 for j in range(n)] for i in range(n)]
for i in range(n):
for j in range(n):
C[i][j]['size'] = 0
D[i][j]['size'] = 0
while True:
for i in range(n):
for j in range(n):
k = randint(0,n-1)
if j in C[i][k] and i in D[k][j]: pass
else:
C[i][k][j] = True
C[i][k]['size'] = C[i][k]['size'] + 1
D[k][j][i] = True
D[k][j]['size'] = D[k][j]['size'] + 1
AB[i][j] = AB[i][j] + A[i][k]*B[k][j]
flag = True
for i in range(n):
for j in range(n):
flag = flag and C[i][j]['size'] == n and D[i][j]['size'] == n
if flag: break
return AB
omega = 2 + random()
def testPoly(x,a,b,c,d,e):
return a*x**(3*e) + b*x**(2*e) + c*x**e + d
setparams = [5,45,5]
experi2Time = [k for k in range(setparams[0],setparams[1],setparams[2])]
xaxis = [k for k in range(setparams[0],setparams[1],setparams[2])]
for k in range(len(xaxis)):
n1 = xaxis[k]
A = [[randint(5,10) for i in range(n1)] for j in range(n1)]
B = [[randint(5,10) for i in range(n1)] for j in range(n1)]
start = time()
monteCarloMatrixMultiply2(A,B)
end = time()
experi2Time[k] = end - start
print('size = ',xaxis[k],' --> done ...')
np.random.seed(0)
params, params_covariance = optimize.curve_fit(
testPoly,xaxis,experi2Time,
p0=[1, 1, 1, 1, 2],
bounds = ([-np.inf,-np.inf,-np.inf,-np.inf,1.5],
[np.inf,np.inf,np.inf,np.inf,2.1]))
print(
'(',params[0],')x^'+str(3*params[4]),' + (',
params[1],')x^'+str(2*params[4]),' + (',
params[2],')x^'+str(params[4])+' +',params[3]
)