forked from eric-yyjau/pytorch-superpoint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_classical.py
291 lines (244 loc) · 9.8 KB
/
export_classical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""export classical feature extractor (not tested)
"""
import argparse
import time
import csv
import yaml
import os
import logging
from pathlib import Path
import torch
import cv2
import numpy as np
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils.utils import tensor2array, save_checkpoint, load_checkpoint, save_path_formatter
from settings import EXPER_PATH
from utils.loader import dataLoader, modelLoader, pretrainedLoader
from utils.utils import getWriterPath
# from utils.logging import *
def export_descriptor(config, output_dir, args):
'''
1) input 2 images, output keypoints and correspondence
:param config:
:param output_dir:
:param args:
:return:
'''
# config
# device = torch.device("cpu")
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logging.info('train on device: %s', device)
with open(os.path.join(output_dir, 'config.yml'), 'w') as f:
yaml.dump(config, f, default_flow_style=False)
writer = SummaryWriter(getWriterPath(task=args.command, date=True))
## save data
from pathlib import Path
# save_path = save_path_formatter(config, output_dir)
save_path = Path(output_dir)
save_output = save_path
save_output = save_output / 'predictions'
save_path = save_path / 'checkpoints'
logging.info('=> will save everything to {}'.format(save_path))
os.makedirs(save_path, exist_ok=True)
os.makedirs(save_output, exist_ok=True)
# data loading
from utils.loader import dataLoader_test as dataLoader
data = dataLoader(config, dataset='hpatches')
test_set, test_loader = data['test_set'], data['test_loader']
from utils.print_tool import datasize
datasize(test_loader, config, tag='test')
from imageio import imread
def load_as_float(path):
return imread(path).astype(np.float32) / 255
def squeezeToNumpy(tensor_arr):
return tensor_arr.detach().cpu().numpy().squeeze()
outputMatches = True
count = 0
max_length = 5
method = config['model']['method']
# tracker = PointTracker(max_length, nn_thresh=fe.nn_thresh)
# for sample in tqdm(enumerate(test_loader)):
for i, sample in tqdm(enumerate(test_loader)):
img_0, img_1 = sample['image'], sample['warped_image']
imgs_np, imgs_fil = [], []
# first image, no matches
imgs_np.append(img_0.numpy().squeeze())
imgs_np.append(img_1.numpy().squeeze())
# H, W = img.shape[1], img.shape[2]
# img = img.view(1,1,H,W)
##### add opencv functions here #####
def classicalDetectors(image, method='sift'):
"""
# sift keyframe detectors and descriptors
"""
image = image*255
round_method = False
if round_method == True:
from models.classical_detectors_descriptors import classical_detector_descriptor # with quantization
points, desc = classical_detector_descriptor(image, **{'method': method})
y, x = np.where(points)
# pnts = np.stack((y, x), axis=1)
pnts = np.stack((x, y), axis=1) # should be (x, y)
## collect descriptros
desc = desc[y, x, :]
else:
# sift with subpixel accuracy
from models.classical_detectors_descriptors import SIFT_det as classical_detector_descriptor
pnts, desc = classical_detector_descriptor(image, image)
print("desc shape: ", desc.shape)
return pnts, desc
pts_list = []
pts, desc_1 = classicalDetectors(imgs_np[0], method=method)
pts_list.append(pts)
print("total points: ", pts.shape)
'''
pts: list [numpy (N, 2)]
desc: list [numpy (N, 128)]
'''
# save keypoints
pred = {}
pred.update({
# 'image_fil': imgs_fil[0],
'image': imgs_np[0],
})
pred.update({'prob': pts,
'desc': desc_1})
# second image, output matches
pred.update({
'warped_image': imgs_np[1],
# 'warped_image_fil': imgs_fil[1],
})
pts, desc_2 = classicalDetectors(imgs_np[1], method=method)
pts_list.append(pts)
# if outputMatches == True:
# tracker.update(pts, desc)
# pred.update({'matches': matches.transpose()})
print("total points: ", pts.shape)
pred.update({'warped_prob': pts,
'warped_desc': desc_2,
'homography': squeezeToNumpy(sample['homography'])
})
## get matches
data = get_sift_match(sift_kps_ii=pts_list[0], sift_des_ii=desc_1, sift_kps_jj=pts_list[1], sift_des_jj=desc_2, if_BF_matcher=True)
matches = data['match_quality_good']
print(f"matches: {matches.shape}")
matches_all = data['match_quality_all']
pred.update({
'matches': matches,
'matches_all': matches_all
})
# clean last descriptor
'''
pred:
'image': np(320,240)
'prob' (keypoints): np (N1, 2)
'desc': np (N2, 256)
'warped_image': np(320,240)
'warped_prob' (keypoints): np (N2, 2)
'warped_desc': np (N2, 256)
'homography': np (3,3)
'matches': np (N3, 4)
'''
# save data
from pathlib import Path
filename = str(count)
path = Path(save_output, '{}.npz'.format(filename))
np.savez_compressed(path, **pred)
count += 1
print("output pairs: ", count)
save_file = save_output / "export.txt"
with open(save_file, "a") as myfile:
myfile.write("output pairs: " + str(count) + '\n')
pass
def get_sift_match(sift_kps_ii, sift_des_ii, sift_kps_jj, sift_des_jj, if_BF_matcher=True):
# select which kind of matcher
if (
if_BF_matcher
): # OpenCV sift matcher must be created inside each thread (because it does not support sharing across threads!)
bf = cv2.BFMatcher(normType=cv2.NORM_L2)
sift_matcher = bf
else:
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
sift_matcher = flann
all_ij, good_ij, quality_good, quality_all, cv_matches = get_sift_match_idx_pair(
sift_matcher, sift_des_ii.copy(), sift_des_jj.copy()
)
if all_ij is None:
logging.warning(
"KNN match failed dumping %s frame %d-%d. Skipping" % (dump_dir, ii, jj)
)
# dump_ij_idx_file = dump_dir / "ij_idx_{}-{}".format(ii, jj)
# dump_ij_quality_file = dump_dir / "ij_quality_{}-{}".format(ii, jj)
# dump_ij_match_quality_file = dump_dir / "ij_match_quality_{}-{}".format(ii, jj)
# print(good_ij, good_ij.shape)
match_quality_good = np.hstack(
(sift_kps_ii[good_ij[:, 0]], sift_kps_jj[good_ij[:, 1]], quality_good)
) # [[x1, y1, x2, y2, dist_good, ratio_good]]
match_quality_all = np.hstack(
(sift_kps_ii[all_ij[:, 0]], sift_kps_jj[all_ij[:, 1]], quality_all)
) # [[x1, y1, x2, y2, dist_good, ratio_good]]
return {'match_quality_good': match_quality_good,
'match_quality_all': match_quality_all, 'cv_matches': cv_matches}
def get_sift_match_idx_pair(sift_matcher, des1, des2):
"""
do matchings, test the quality of matchings
"""
try:
matches = sift_matcher.knnMatch(
des1, des2, k=2
) # another option is https://github.com/MagicLeapResearch/SuperPointPretrainedNetwork/blob/master/demo_superpoint.py#L309
except Exception as e:
logging.error(traceback.format_exception(*sys.exc_info()))
return None, None
# store all the good matches as per Lowe's ratio test.
good = []
all_m = []
quality_good = []
quality_all = []
for m, n in matches:
all_m.append(m)
if m.distance < 0.8 * n.distance:
good.append(m)
quality_good.append([m.distance, m.distance / n.distance])
quality_all.append([m.distance, m.distance / n.distance])
good_ij = [[mat.queryIdx for mat in good], [mat.trainIdx for mat in good]]
all_ij = [[mat.queryIdx for mat in all_m], [mat.trainIdx for mat in all_m]]
return (
np.asarray(all_ij, dtype=np.int32).T.copy(),
np.asarray(good_ij, dtype=np.int32).T.copy(),
np.asarray(quality_good, dtype=np.float32).copy(),
np.asarray(quality_all, dtype=np.float32).copy(),
matches
)
if __name__ == '__main__':
# global var
torch.set_default_tensor_type(torch.FloatTensor)
logging.basicConfig(format='[%(asctime)s %(levelname)s] %(message)s',
datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO)
# add parser
parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest='command')
# export command
p_train = subparsers.add_parser('export_descriptor')
p_train.add_argument('config', type=str)
p_train.add_argument('exper_name', type=str)
# p_train.add_argument('exper', type=str)
p_train.add_argument('--correspondence', action='store_true')
p_train.add_argument('--eval', action='store_true')
p_train.add_argument('--debug', action='store_true', default=False,
help='turn on debuging mode')
p_train.set_defaults(func=export_descriptor)
args = parser.parse_args()
with open(args.config, 'r') as f:
config = yaml.load(f)
output_dir = os.path.join(EXPER_PATH, args.exper_name)
os.makedirs(output_dir, exist_ok=True)
# with capture_outputs(os.path.join(output_dir, 'log')):
logging.info('Running command {}'.format(args.command.upper()))
args.func(config, output_dir, args)
# global variables
# main()